AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Design and integration of flexible planar micro- supercapacitors

Lili Liu1Zhiqiang Niu2( )Jun Chen2,3
Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering Tianjin University of TechnologyTianjin 300384 China
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry Nankai UniversityTianjin 300071 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai UniversityTianjin 300071 China
Show Author Information

Graphical Abstract

Abstract

As promising candidates for energy-storage devices, supercapacitors (SCs) have attracted considerable attention because of their unique features, such as their high power density, outstanding rate capability, excellent cycling performance, and safety. The recent boom in portable electronic devices requires high- performance SCs that are flexible, simplified, thin, and integrated. Tremendous efforts have been directed towards the design and integration of planar micro- SCs (MSCs) based on different active electrode materials by various methods. This review highlights the recent developments in the device design of flexible planar MSCs and their integration with other electronic devices. The current challenges and future prospects for the development of flexible MSCs are also discussed.

References

1

Wang, G. P.; Zhang, L.; Zhang, J. J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828.

2

Wang, X. L.; Shi, G. G. Flexible graphene devices related to energy conversion and storage. Energy Environ. Sci. 2015, 8, 790–823.

3

Liu, Q.-C.; Li, L.; Xu, J.-J.; Chang, Z.-W.; Xu, D.; Yin, Y.-B.; Yang, X.-Y.; Liu, T.; Jiang, Y.-S.; Yan, J.-M. et al. Flexible and foldable Li-O2 battery based on paper-ink cathode. Adv. Mater. 2015, 27, 8095–8101.

4

Liu, Q.-C.; Xu, J.-J.; Xu, D.; Zhang, X.-B. Flexible lithium-oxygen battery based on a recoverable cathode. Nat. Commun. 2015, 6, 7892.

5

Hu, X. F.; Sun, J. C.; Li, Z. F.; Zhao, Q.; Chen, C. C.; Chen, J. Rechargeable room-temperature Na-CO2 batteries. Angew. Chem., Int. Ed. 2016, 55, 6482–6486.

6

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

7

Zhang, L. L.; Zhao, X. S. Carbon-based materials as super­capacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.

8

Liu, L. L.; Niu, Z. Q.; Chen, J. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chem. Soc. Rev. 2016, 45, 4340–4363.

9

Niu, Z. Q.; Chen, J.; Hng, H. H.; Ma, J.; Chen, X. D. A leavening strategy to prepare reduced graphene oxide foams. Adv. Mater. 2012, 24, 4144–4150.

10

Niu, Z. Q.; Dong, H. B.; Zhu, B. W.; Li, J. Z.; Hng, H. H.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv. Mater. 2013, 25, 1058–1064.

11

Yang, Y. J.; He, L.; Tang, C. J.; Hu, P.; Hong, X. F.; Yan, M. Y.; Dong, Y. X.; Tian, X. C.; Wei, Q. L.; Mai, L. Q. Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. Nano Res. 2016, 9, 2510–2519.

12

Béguin, F.; Presser, V.; Balducci, A.; Frackowiak, E. Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 2014, 26, 2219–2251.

13

Han, S.; Wu, D. Q.; Li, S.; Zhang, F.; Feng, X. L. Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv. Mater. 2014, 26, 849–864.

14

Cao, Z. Y.; Wei, B. Q. A perspective: Carbon nanotube macro-films for energy storage. Energy Environ. Sci. 2013, 6, 3183–3201.

15

Niu, Z. Q.; Zhou, W. Y.; Chen, X. D.; Chen, J.; Xie, S. S. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv. Mater. 2015, 27, 6002–6008.

16

Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828–4850.

17

Cao, X. H.; Yin, Z. Y.; Zhang, H. Three-dimensional graphene materials: Preparation, structures and application in supercapacitors. Energy Environ. Sci. 2014, 7, 1850–1865.

18

Yang, X. W.; Cheng, C.; Wang, Y. F.; Qiu, L.; Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 2013, 341, 534–537.

19

Sundramoorthy, A. K.; Wang, Y. C.; Gunasekaran, S. Low-temperature solution process for preparing flexible transparent carbon nanotube film for use in flexible super­capacitors. Nano Res. 2015, 8, 3430–3445.

20

Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Liu, Y.; Huang, Y.; Duan, X. F. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 2013, 7, 4042–4049.

21

Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Wang, Y.; Huang, Y.; Duan, X. F. Functionalized graphene hydrogel-based high- performance supercapacitors. Adv. Mater. 2013, 25, 5779–5784.

22

Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Huang, X. Q.; Weiss, N. O.; Huang, Y.; Duan, X. F. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 2014, 5, 4554.

23

Peng, X.; Peng, L. L.; Wu, C. Z.; Xie, Y. Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 2014, 43, 3303–3323.

24

Lin, T. Q.; Chen, I. W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513.

25

Yan, J.; Wang, Q.; Wei, T.; Fan, Z. J. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4, 1300816

26

Liu, L. L.; Niu, Z. Q.; Zhang, L.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv. Mater. 2014, 26, 4855–4862.

27

Niu, Z. Q.; Luan, P. S.; Shao, Q.; Dong, H. B.; Li, J. Z.; Chen, J.; Zhao, D.; Cai, L.; Zhou, W. Y.; Chen, X. D. et al. A "skeleton/skin" strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy Environ. Sci. 2012, 5, 8726–8733.

28

Hercule, K. M.; Wei, Q. L.; Khan, A. M.; Zhao, Y. L.; Tian, X. C.; Mai, L. Q. Synergistic effect of hierarchical nanostructured MoO2/Co(OH)2 with largely enhanced pseudocapacitor cyclability. Nano Lett. 2013, 13, 5685–5691.

29

Du, H. M.; Jiao, L. F.; Wang, Q. H.; Yang, J. Q.; Guo, L. J.; Si, Y. C.; Wang, Y. J.; Yuan, H. T. Facile carbonaceous microsphere templated synthesis of Co3O4 hollow spheres and their electrochemical performance in supercapacitors. Nano Res. 2013, 6, 87–98.

30

Li, P. X.; Shi, E. Z.; Yang, Y. B.; Shang, Y. Y.; Peng, Q. Y.; Wu, S. T.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Yuan, Q. et al. Carbon nanotube-polypyrrole core–shell sponge and its application as highly compressible supercapacitor electrode. Nano Res. 2014, 7, 209–218.

31

Park, S.; Shim, H. W.; Lee, C. W.; Song, H. J.; Park, I. J.; Kim, J. C.; Hong, K. S.; Kim, D. W. Tailoring uniform γ-MnO2 nanosheets on highly conductive three-dimensional current collectors for high-performance supercapacitor electrodes. Nano Res. 2015, 8, 990–1004.

32

Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Res. 2016, 9, 2026–2033.

33

Reddy, A. L. M.; Gowda, S. R.; Shaijumon, M. M.; Ajayan, P. M. Hybrid nanostructures for energy storage applications. Adv. Mater. 2012, 24, 5045–5064.

34

Chen, P. C.; Chen, H. T.; Qiu, J.; Zhou, C. W. Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res. 2010, 3, 594–603.

35

Peng, Y. T.; Chen, Z.; Wen, J.; Xiao, Q. F.; Weng, D.; He, S. Y.; Geng, H. B.; Lu, Y. F. Hierarchical manganese oxide/carbon nanocomposites for supercapacitor electrodes. Nano Res. 2011, 4, 216–225.

36

Wang, H. L.; Liang, Y. Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H. J. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 2011, 4, 729–736.

37

Wang, H. Y.; Deng, J.; Chen, Y. Q.; Xu, F.; Wei, Z. Z.; Wang, Y. Hydrothermal synthesis of manganese oxide encapsulated multiporous carbon nanofibers for super­capacitors. Nano Res. 2016, 9, 2672–2680.

38

Xu, Y. X.; Huang, X. Q.; Lin, Z. Y.; Zhong, X.; Huang, Y.; Duan, X. F. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 2013, 6, 65–76.

39

Hammock, M. L.; Chortos, A.; Tee, B. C. K.; Tok, J. B. H.; Bao, Z. 25th anniversary article: The evolution of electronic skin (E-Skin): A brief history, design considerations, and recent progress. Adv. Mater. 2013, 25, 5997–6037.

40

Niu, Z. Q.; Liu, L. L.; Zhang, L.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Programmable nanocarbon-based architectures for flexible supercapacitors. Adv. Energy Mater. 2015, 5, 1500677.

41

Nyholm, L.; Nyström, G.; Mihranyan, A.; Strømme, M. Toward flexible polymer and paper-based energy storage devices. Adv. Mater. 2011, 23, 3751–3769.

42

Shao, Y. L.; El-Kady, M. F.; Wang, L. J.; Zhang, Q. L.; Li, Y. G.; Wang, H. Z.; Mousavi, M. F.; Kaner, R. B. Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 2015, 44, 3639–3665.

43

Zhou, G. M.; Li, F.; Cheng, H.-M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7, 1307–1338.

44

Cai, X.; Peng, M.; Yu, X.; Fu, Y. P.; Zou, D. C. Flexible planar/fiber-architectured supercapacitors for wearable energy storage. J. Mater. Chem. C 2014, 2, 1184–1200.

45

Yang, P. H.; Mai, W. J. Flexible solid-state electrochemical supercapacitors. Nano Energy 2014, 8, 274–290.

46

Wu, Z.-S.; Feng, X. L.; Cheng, H.-M. Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage. Natl. Sci. Rev. 2014, 1, 277–292.

47

Li, L.; Wu, Z.; Yuan, S.; Zhang, X.-B. Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 2014, 7, 2101–2122.

48

He, Y. M.; Chen, W. J.; Gao, C. T.; Zhou, J. Y.; Li, X. D.; Xie, E. Q. An overview of carbon materials for flexible electrochemical capacitors. Nanoscale 2013, 5, 8799–8820.

49

Xu, H. H.; Hu, X. L.; Sun, Y. M.; Yang, H. L.; Liu, X. X.; Huang, Y. H. Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Res. 2015, 8, 1148–1158.

50

Beidaghi, M.; Gogotsi, Y. Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 2014, 7, 867–884.

51

Liu, W. W.; Feng, Y. Q.; Yan, X. B.; Chen, J. T.; Xue, Q. J. Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater. 2013, 23, 4111–4122.

52

Huang, P.; Lethien, C.; Pinaud, S.; Brousse, K.; Laloo, R.; Turq, V.; Respaud, M.; Demortiere, A.; Daffos, B.; Taberna, P. L. et al. On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 2016, 351, 691–695.

53

Luan, P. S.; Zhang, N.; Zhou, W. Y.; Niu, Z. Q.; Zhang, Q.; Cai, L.; Zhang, X.; Yang, F.; Fan, Q. X.; Zhou, W. B. et al. Epidermal supercapacitor with high performance. Adv. Funct. Mater. 2016, 26, 8178–8184.

54

Xu, H. H.; Hu, X. L.; Yang, H. L.; Sun, Y. M.; Hu, C. C.; Huang, Y. H. Flexible asymmetric micro-supercapacitors based on Bi2O3 and MnO2 nanoflowers: Larger areal mass promises higher energy density. Adv. Energy Mater. 2015, 5, 1401882.

55

Dong, X. L.; Guo, Z. Y.; Song, Y. F.; Hou, M. Y.; Wang, J. Q.; Wang, Y. G.; Xia, Y. Y. Flexible and wire-shaped micro-supercapacitor based on Ni(OH)2-nanowire and ordered mesoporous carbon electrodes. Adv. Funct. Mater. 2014, 24, 3405–3412.

56

Gao, F.; Wolfer, M. T.; Nebel, C. E. Highly porous diamond foam as a thin-film micro-supercapacitor material. Carbon 2014, 80, 833–840.

57

Ji, H. X.; Mei, Y. F.; Schmidt, O. G. Swiss roll nano­membranes with controlled proton diffusion as redox micro- supercapacitors. Chem. Commun. 2010, 46, 3881–3883.

58

Aradilla, D.; Gao, F.; Lewes-Malandrakis, G.; Muller- Sebert, W.; Gaboriau, D.; Gentile, P.; Iliev, B.; Schubert, T.; Sadki, S.; Bidan, G. et al. A step forward into hierarchically nanostructured materials for high performance micro- supercapacitors: Diamond-coated SiNW electrodes in protic ionic liquid electrolyte. Electrochem. Commun. 2016, 63, 34–38.

59

Huang, P.; Pech, D.; Lin, R. Y.; McDonough, J. K.; Brunet, M.; Taberna, P.-L.; Gogotsi, Y.; Simon, P. On-chip micro-supercapacitors for operation in a wide temperature range. Electrochem. Commun. 2013, 36, 53–56.

60

Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes. Electrochim. Acta 2011, 56, 9508–9514.

61

Thissandier, F.; Dupre, L.; Gentile, P.; Brousse, T.; Bidan, G.; Buttard, D.; Sadki, S. Ultra-dense and highly doped SiNWs for micro-supercapacitors electrodes. Electrochim. Acta 2014, 117, 159–163.

62

Brachet, M.; Gaboriau, D.; Gentile, P.; Fantini, S.; Bidan, G.; Sadki, S.; Brousse, T.; Le Bideau, J. Solder-reflow resistant solid-state micro-supercapacitors based on ionogels. J. Mater. Chem. A 2016, 4, 11835–11843.

63

Achour, A.; Porto, R. L.; Soussou, M. A.; Islam, M.; Boujtita, M.; Aissa, K. A.; Le Brizoual, L.; Djouadi, A.; Brousse, T. Titanium nitride films for micro-supercapacitors: Effect of surface chemistry and film morphology on the capacitance. J. Power Sources 2015, 300, 525–532.

64

Huang, P. H.; Heon, M.; Pech, D.; Brunet, M.; Taberna, P. L.; Gogotsi, Y.; Lofland, S.; Hettinger, J. D.; Simon, P. Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips. J. Power Sources 2013, 225, 240–244.

65

Liu, C.-C.; Tsai, D.-S.; Chung, W.-H.; Li, K.-W.; Lee, K.-Y.; Huang, Y.-S. Electrochemical micro-capacitors of patterned electrodes loaded with manganese oxide and carbon nanotubes. J. Power Sources 2011, 196, 5761–5768.

66

Achour, A.; Ducros, J. B.; Porto, R. L.; Boujtita, M.; Gautron, E.; Le Brizoual, L.; Djouadi, M. A.; Brousse, T. Hierarchical nanocomposite electrodes based on titanium nitride and carbon nanotubes for micro-supercapacitors. Nano Energy 2014, 7, 104–113.

67

Alper, J. P.; Wang, S.; Rossi, F.; Salviati, G.; Yiu, N.; Carraro, C.; Maboudian, R. Selective ultrathin carbon sheath on porous silicon nanowires: Materials for extremely high energy density planar micro-supercapacitors. Nano Lett. 2014, 14, 1843–1847.

68

Lin, J.; Zhang, C. G.; Yan, Z.; Zhu, Y.; Peng, Z. W.; Hauge, R. H.; Natelson, D.; Tour, J. M. 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 2013, 13, 72–78.

69

Wang, X.; Myers, B. D.; Yan, J.; Shekhawat, G.; Dravid, V.; Lee, P. S. Manganese oxide micro-supercapacitors with ultra-high areal capacitance. Nanoscale 2013, 5, 4119–4122.

70

Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5, 651–654.

71

Niu, Z. Q.; Zhang, L.; Liu, L. L.; Zhu, B. W.; Dong, H. B.; Chen, X. D. All-solid-state flexible ultrathin micro- supercapacitors based on graphene. Adv. Mater. 2013, 25, 4035–4042.

72

Wang, X. F.; Lu, X. H.; Liu, B.; Chen, D.; Tong, Y. X.; Shen, G. Z. Flexible energy-storage devices: Design consideration and recent progress. Adv. Mater. 2014, 26, 4763–4782.

73

Niu, Z. Q.; Ma, W. J.; Li, J. Z.; Dong, H. B.; Ren, Y.; Zhao, D.; Zhou, W. Y.; Xie, S. S. High-strength laminated copper matrix nanocomposites developed from a single- walled carbon nanotube film with continuous reticulate architecture. Adv. Funct. Mater. 2012, 22, 5209–5215.

74

Yu, Y. Z.; Zhang, J.; Wu, X.; Zhu, Z. Q. Facile ion- exchange synthesis of silver films as flexible current collectors for micro-supercapacitors. J. Mater. Chem. A 2015, 3, 21009–21015.

75

Kim, H.; Yoon, J.; Lee, G.; Paik, S. H.; Choi, G.; Kim, D.; Kim, B. M.; Zi, G.; Ha, J. S. Encapsulated, high-performance, stretchable array of stacked planar micro-supercapacitors as waterproof wearable energy storage devices. ACS Appl. Mater. Interfaces 2016, 8, 16016–16025.

76

Kim, D.; Shin, G.; Kang, Y. J.; Kim, W.; Ha, J. S. Fabrication of a stretchable solid-state micro-supercapacitor array. ACS Nano 2013, 7, 7975–7982.

77

Kim, S. K.; Koo, H. J.; Lee, A.; Braun, P. V. Selective wetting-induced micro-electrode patterning for flexible micro-supercapacitors. Adv. Mater. 2014, 26, 5108–5112.

78

Hsia, B.; Marschewski, J.; Wang, S.; In, J. B.; Carraro, C.; Poulikakos, D.; Grigoropoulos, C. P.; Maboudian, R. Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes. Nanotechnology 2014, 25, 055401.

79

Lee, G.; Kim, D.; Yun, J.; Ko, Y.; Cho, J.; Ha, J. S. High- performance all-solid-state flexible micro-supercapacitor arrays with layer-by-layer assembled MWNT/MnOx nanocomposite electrodes. Nanoscale 2014, 6, 9655–9664.

80

Lee, G.; Kim, D.; Kim, D.; Oh, S.; Yun, J.; Kim, J.; Lee, S.-S.; Ha, J. S. Fabrication of a stretchable and patchable array of high performance micro-supercapacitors using a non-aqueous solvent based gel electrolyte. Energy Environ. Sci. 2015, 8, 1764–1774.

81

Sun, L. M.; Wang, X. H.; Zhang, K.; Zou, J. P.; Zhang, Q. Metal-free SWNT/carbon/MnO2 hybrid electrode for high performance coplanar micro-supercapacitors. Nano Energy 2016, 22, 11–18.

82

Liu, W. W.; Lu, C. X.; Li, H. L.; Tay, R. Y.; Sun, L. M.; Wang, X. H.; Chow, W. L.; Wang, X. L.; Tay, B. K.; Chen, Z. W. et al. Paper-based all-solid-state flexible micro- supercapacitors with ultra-high rate and rapid frequency response capabilities. J. Mater. Chem. A 2016, 4, 3754–3764.

83

Chen, J.; Jia, C. Y.; Wan, Z. Q. The preparation and electro­chemical properties of MnO2/poly(3, 4-ethylenedioxythiophene)/ multiwalled carbon nanotubes hybrid nanocomposite and its application in a novel flexible micro-supercapacitor. Electrochim. Acta 2014, 121, 49–56.

84

Wang, J.-G.; Kang, F. Y.; Wei, B. Q. Engineering of MnO2- based nanocomposites for high-performance supercapacitors. Prog. Mater. Sci. 2015, 74, 51–124.

85

Liu, L. L.; Niu, Z. Q.; Zhang, L.; Chen, X. D. Structural diversity of bulky graphene materials. Small 2014, 10, 2200–2214.

86

Niu, Z. Q.; Liu, L. L.; Zhang, L.; Chen, X. D. Porous graphene materials for water remediation. Small 2014, 10, 3434–3441.

87

Lee, S. C.; Patil, U. M.; Kim, S. J.; Ahn, S.; Kang, S. W.; Jun, S. C. All-solid-state flexible asymmetric micro super­capacitors based on cobalt hydroxide and reduced graphene oxide electrodes. RSC Adv. 2016, 6, 43844–43854.

88

Sun, G. Z.; An, J.; Chua, C. K.; Pang, H. C.; Zhang, J.; Chen, P. Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar micro- supercapacitors. Electrochem. Commun. 2015, 51, 33–36.

89

Cao, J.; Chen, C.; Zhao, Q.; Zhang, N.; Lu, Q. Q.; Wang, X. Y.; Niu, Z. Q.; Chen, J. A flexible nanostructured paper of a reduced graphene oxide–sulfur composite for high- performance lithium–sulfur batteries with unconventional configurations. Adv. Mater. 2016, 28, 9629–9636.

90

Maiti, U. N.; Lim, J.; Lee, K. E.; Lee, W. J.; Kim, S. O. Three-dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors. Adv. Mater. 2014, 26, 615–619.

91

Wu, Z.-K.; Lin, Z. Y.; Li, L. Y.; Song, B.; Moon, K.-S.; Bai, S.-L.; Wong, C.-P. Flexible micro-supercapacitor based on in-situ assembled graphene on metal template at room temperature. Nano Energy 2014, 10, 222–228.

92

Qi, D. P.; Liu, Z. Y.; Liu, Y.; Leow, W. R.; Zhu, B. W.; Yang, H.; Yu, J. C.; Wang, W.; Wang, H.; Yin, S. Y. et al. Suspended wavy graphene microribbons for highly stretchable microsupercapacitors. Adv. Mater. 2015, 27, 5559–5566.

93

Nam, I.; Kim, G. P.; Park, S.; Han, J. W.; Yi, J. All- solid-state, origami-type foldable supercapacitor chips with integrated series circuit analogues. Energy Environ. Sci. 2014, 7, 1095–1102.

94

Weng, Z.; Su, Y.; Wang, D. W.; Li, F.; Du, J. H.; Cheng, H. M. Graphene-cellulose paper flexible supercapacitors. Adv. Energy Mater. 2011, 1, 917–922.

95

Wu, Z. S.; Parvez, K.; Feng, X. L.; Müllen, K. Graphene- based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 2013, 4, 2487.

96

Yoo, J. J.; Balakrishnan, K.; Huang, J. S.; Meunier, V.; Sumpter, B. G.; Srivastava, A.; Conway, M.; Reddy, A. L. M.; Yu, J.; Vajtai, R. et al. Ultrathin planar graphene super­capacitors. Nano Lett. 2011, 11, 1423–1427.

97

Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L. J.; Vajtai, R.; Zhang, Q.; Wei, B. Q.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496–500.

98

El-Kady, M. F.; Kaner, R. B. Scalable fabrication of high- power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475.

99

Wu, Z. S.; Parvez, K.; Li, S.; Yang, S.; Liu, Z. Y.; Liu, S. H.; Feng, X. L.; Müllen, K. Alternating stacked graphene- conducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro-supercapacitors. Adv. Mater. 2015, 27, 4054–4061.

100

Wu, Z.-S.; Parvez, K.; Winter, A.; Vieker, H.; Liu, X. J.; Han, S.; Turchanin, A.; Feng, X. L.; Müllen, K. Layer-by- layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors. Adv. Mater. 2014, 26, 4552–4558.

101

Wen, F. S.; Hao, C. X.; Xiang, J. Y.; Wang, L. M.; Hou, H.; Su, Z. B.; Hu, W. T.; Liu, Z. Y. Enhanced laser scribed flexible graphene-based micro-supercapacitor performance with reduction of carbon nanotubes diameter. Carbon 2014, 75, 236–243.

102

Li, R. Z.; Peng, R.; Kihm, K. D.; Bai, S.; Bridges, D.; Tumuluri, U.; Wu, Z.; Zhang, T.; Compagnini, G.; Feng, Z. et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes. Energy Environ. Sci. 2016, 9, 1458–1467.

103

Song, B.; Li, L. Y.; Lin, Z. Y.; Wu, Z. K.; Moon, K. S.; Wong, C. P. Water-dispersible graphene/polyaniline com­posites for flexible micro-supercapacitors with high energy densities. Nano Energy 2015, 16, 470–478.

104

Xue, M. Q.; Li, F. W.; Zhu, J.; Song, H.; Zhang, M. N.; Cao, T. B. Structure-based enhanced capacitance: In situ growth of highly ordered polyaniline nanorods on reduced graphene oxide patterns. Adv. Funct. Mater. 2012, 22, 1284–1290.

105

Tian, X. C.; Xiao, B.; Xu, X.; Xu, L.; Liu, Z. H.; Wang, Z. Y.; Yan, M. Y.; Wei, Q. L.; Mai, L. Q. Vertically stacked holey graphene/polyaniline heterostructures with enhanced energy storage for on-chip micro-supercapacitors. Nano Res. 2016, 9, 1012–1021.

106

Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 2012, 22, 4501–4510.

107

Moon, Y. S.; Kim, D.; Lee, G.; Hong, S. Y.; Kim, K. K.; Park, S. M.; Ha, J. S. Fabrication of flexible micro- supercapacitor array with patterned graphene foam/MWNT- COOH/MnOx electrodes and its application. Carbon 2015, 81, 29–37.

108

Kim, M. S.; Hsia, B.; Carraro, C.; Maboudian, R. Flexible micro-supercapacitors with high energy density from simple transfer of photoresist-derived porous carbon electrodes. Carbon 2014, 74, 163–169.

109

Hsia, B.; Kim, M. S.; Vincent, M.; Carraro, C.; Maboudian, R. Photoresist-derived porous carbon for on-chip micro- supercapacitors. Carbon 2013, 57, 395–400.

110

Wang, S.; Hsia, B.; Carraro, C.; Maboudian, R. High- performance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte. J. Mater. Chem. A 2014, 2, 7997–8002.

111

Bin In, J.; Hsia, B.; Yoo, J. H.; Hyun, S.; Carraro, C.; Maboudian, R.; Grigoropoulos, C. P. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide. Carbon 2015, 83, 144–151.

112

Cai, J. G.; Lv, C.; Watanabe, A. Cost-effective fabrication of high-performance flexible all-solid-state carbon micro- supercapacitors by blue-violet laser direct writing and further surface treatment. J. Mater. Chem. A 2016, 4, 1671–1679.

113

Kurra, N.; Hota, M. K.; Alshareef, H. N. Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering. Nano Energy 2015, 13, 500–508.

114

Wang, K.; Zou, W. J.; Quan, B. G.; Yu, A. F.; Wu, H. P.; Jiang, P.; Wei, Z. X. An all-solid-state flexible micro- supercapacitor on a chip. Adv. Energy Mater. 2011, 1, 1068–1072.

115

Hu, H. B.; Zhang, K.; Li, S. X.; Jia, S. L.; Ye, C. H. Flexible, in-plane, and all-solid-state micro-supercapacitors based on printed interdigital Au/polyaniline network hybrid electrodes on a chip. J. Mater. Chem. A 2014, 2, 20916–20922.

116

Feng, J.; Sun, X.; Wu, C. Z.; Peng, L. L.; Lin, C. W.; Hu, S. L.; Yang, J. L.; Xie, Y. Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 2011, 133, 17832–17838.

117

Tian, X. C.; Shi, M. Z.; Xu, X.; Yan, M. Y.; Xu, L.; Minhas-Khan, A.; Han, C. H.; He, L.; Mai, L. Q. Arbitrary shape engineerable spiral micropseudocapacitors with ultrahigh energy and power densities. Adv. Mater. 2015, 27, 7476–7482.

118

Gu, S. S.; Lou, Z.; Li, L. D.; Chen, Z. J.; Ma, X. D.; Shen, G. Z. Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro- supercapacitors for integrated photodetecting applications. Nano Res. 2016, 9, 424–434.

119

Yun, J.; Lim, Y.; Jang, G. N.; Kim, D.; Lee, S. J.; Park, H.; Hong, S. Y.; Lee, G.; Zi, G.; Ha, J. S. Stretchable patterned graphene gas sensor driven by integrated micro-supercapacitor array. Nano Energy 2016, 19, 401–414.

120

Kim, D.; Yun, J.; Lee, G.; Ha, J. S. Fabrication of high performance flexible micro-supercapacitor arrays with hybrid electrodes of MWNT/V2O5 nanowires integrated with a SnO2 nanowire UV sensor. Nanoscale 2014, 6, 12034–12041.

121

Luo, J. J.; Fan, F. R.; Jiang, T.; Wang, Z. W.; Tang, W.; Zhang, C. P.; Liu, M. M.; Cao, G. Z.; Wang, Z. L. Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit. Nano Res. 2015, 8, 3934–3943.

122

Gogotsi, Y.; Simon, P. True performance metrics in elec­trochemical energy storage. Science 2011, 334, 917–918.

Nano Research
Pages 1524-1544
Cite this article:
Liu L, Niu Z, Chen J. Design and integration of flexible planar micro- supercapacitors. Nano Research, 2017, 10(5): 1524-1544. https://doi.org/10.1007/s12274-017-1448-z
Part of a topical collection:

754

Views

70

Crossref

N/A

Web of Science

73

Scopus

10

CSCD

Altmetrics

Received: 25 October 2016
Revised: 22 December 2016
Accepted: 30 December 2016
Published: 26 January 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return