AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Deriving phosphorus atomic chains from few-layer black phosphorus

Zhangru Xiao1,§Jingsi Qiao2,§Wanglin Lu1Guojun Ye3,4Xianhui Chen3,4Ze Zhang1Wei Ji2( )Jixue Li1( )Chuanhong Jin1( )
State Key Laboratory of Silicon MaterialsSchool of Materials Science and Engineering, Zhejiang UniversityHangzhou310027China
Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano DevicesRenmin University of ChinaBeijing100872China
Key Laboratory of Strongly-coupled Quantum Matter PhysicsHefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of ChinaHefei230026China
Collaborative Innovation Center of Advanced Microstructures, Nanjing UniversityNanjing210093China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Phosphorus atomic chains, the narrowest nanostructures of black phosphorus (BP), are highly relevant to the in-depth development of BP-based one-dimensional (1D) nano-electronics components. In this study, we report a top-down route for the preparation of phosphorus atomic chains via electron beam sculpturing inside a transmission electron microscope (TEM). The growth and dynamics (i.e., rupture and edge migration) of 1D phosphorus chains are experimentally captured for the first time. Furthermore, the dynamic behavior and associated energetics of the as-formed phosphorus chains are further investigated by density functional theory (DFT) calculations. It is hoped that these 1D BP structures will serve as a novel platform and inspire further exploration of the versatile properties of BP.

Electronic Supplementary Material

Video
nr-10-7-2519_ESM1.avi
nr-10-7-2519_ESM2.avi
Download File(s)
nr-10-7-2519_ESM.pdf (1.5 MB)

References

1

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.

2

Kou, L. Z.; Chen, C. F.; Smith, S. C. Phosphorene: Fabrication, properties, and applications. J. Phys. Chem. Lett. 2015, 6, 2794-2805.

3

Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033-4041.

4

Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

5

Ling, X.; Wang, H.; Huang, S. X.; Xia, F. N.; Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 2015, 112, 4523-4530.

6

Lu, W. L.; Nan, H. Y.; Hong, J. H.; Chen, Y. M.; Zhu, C.; Liang, Z.; Ma, X. Y.; Ni, Z. H.; Jin, C. H.; Zhang, Z. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 2014, 7, 853-859.

7

Bridgman, P. W. Two new modifications of phosphorus. J. Am. Chem. Soc. 1914, 36, 1344-1363.

8

Liu, H.; Du, Y. C.; Deng, Y. X.; Ye, P. D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732-2743.

9

Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347-3352.

10

Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

11

Lu, W. L.; Ma, X. M.; Fei, Z.; Zhou, J. G.; Zhang, Z. Y.; Jin, C. H.; Zhang, Z. Probing the anisotropic behaviors of black phosphorus by transmission electron microscopy, angular-dependent raman spectra, and electronic transport measurements. Appl. Phys. Lett. 2015, 107, 021906.

12

Castellanos-Gomez, A. Black phosphorus: Narrow gap, wide applications. J. Phys. Chem. Lett. 2015, 6, 4280-4291.

13

Das, S.; Zhang, W.; Demarteau, M.; Hoffmann, A.; Dubey, M.; Roelofs, A. Tunable transport gap in phosphorene. Nano Lett. 2014, 14, 5733-5739.

14

Tran, V.; Yang, L. Scaling laws for the band gap and optical response of phosphorene nanoribbons. Phys. Rev. B 2014, 89, 245407.

15

Carvalho, A.; Rodin, A. S.; Neto, A. H. C. Phosphorene nanoribbons. Epl 2014, 108, 47005.

16

Zhang, J.; Liu, H. J.; Cheng, L.; Wei, J.; Liang, J. H.; Fan, D. D.; Shi, J.; Tang, X. F.; Zhang, Q. J. Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Sci. Rep. 2014, 4, 6452.

17

Han, X. Y.; Stewart, H. M.; Shevlin, S. A.; Catlow, C. R. A.; Guo, Z. X. Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. Nano Lett. 2014, 14, 4607-4614.

18

Farooq, M. U.; Hashmi, A.; Hong, J. Manipulation of magnetic state in armchair black phosphorene nanoribbon by charge doping. ACS Appl. Mater. Interfaces 2015, 7, 14423-14430.

19

Liang, L. B.; Wang, J.; Lin, W. Z.; Sumpter, B. G.; Meunier, V.; Pan, M. H. Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett. 2014, 14, 6400-6406.

20

Peng, X. H.; Copple, A.; Wei, Q. Edge effects on the electronic properties of phosphorene nanoribbons. J. Appl. Phys. 2014, 116, 144301.

21

Das, P. M.; Danda, G.; Cupo, A.; Parkin, W. M.; Liang, L. B.; Kharche, N.; Ling, X.; Huang, S. X.; Dresselhaus, M. S.; Meunier, V. et al. Controlled sculpture of black phosphorus nanoribbons. ACS Nano 2016, 10, 5687-5695.

22

Jin, C. H.; Lan, H. P.; Peng, L. M.; Suenaga, K.; Iijima, S. Deriving carbon atomic chains from graphene. Phys. Rev. Lett. 2009, 102, 205501.

23

Chuvilin, A.; Meyer, J. C.; Algara-Siller, G.; Kaiser, U. From graphene constrictions to single carbon chains. New J. Phys. 2009, 11, 083019.

24

Cretu, O.; Komsa, H. P.; Lehtinen, O.; Algara-Siller, G.; Kaiser, U.; Suenaga, K.; Krasheninnikov, A. V. Experimental observation of boron nitride chains. ACS Nano 2014, 8, 11950-11957.

25

Liu, X. F.; Xu, T.; Wu, X.; Zhang, Z. H.; Yu, J.; Qiu, H.; Hong, J. H.; Jin, C. H.; Li, J. X.; Wang, X. R. et al. Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat. Commun. 2013, 4, 1776.

26

Lin, J. H.; Zhang, Y. Y.; Zhou, W.; Pantelides, S. T. Structural flexibility and alloying in ultrathin transition-metal chalcogenide nanowires. ACS Nano 2016, 10, 2782-2790.

27

Vierimaa, V.; Krasheninnikov, A. V.; Komsa, H. P. Phosphorene under electron beam: From monolayer to one- dimensional chains. Nanoscale 2016, 8, 7949-7957.

28

Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H. S. J.; Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002.

29

Wood, J. D.; Wells, S. A.; Jariwala, D.; Chen, K. S.; Cho, E.; Sangwan, V. K.; Liu, X. L.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 2014, 14, 6964-6970.

30

Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014, 1, 025001.

31

Favron, A.; Gaufrès, E.; Fossard, F.; Phaneuf-L'Heureux, A. L.; Tang, N. Y. W.; Lévesque, P. L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 2015, 14, 826-832.

32

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.

33

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

34

Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

35

Lee, K.; Murray, É. D.; Kong, L. Z.; Lundqvist, B. I.; Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 2010, 82, 081101(R).

36

Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

37

Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. : Condens. Matter 2010, 22, 022201.

38

Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.

39

Hu, Z. -X.; Kong, X.; Qiao, J.; Normand, B.; Ji, W. Interlayer electronic hybridization leads to exceptional thickness- dependent vibrational properties in few-layer black phosphorus. Nanoscale 2016, 8, 2740-2750.

40

Liu, Z.; Tizei, L. H. G.; Sato, Y.; Lin, Y. C.; Yeh, C. H.; Chiu, P. W.; Terauchi, M.; Iijima, S.; Suenaga, K. Postsynthesis of h-BN/graphene heterostructures inside a STEM. Small 2016, 12, 252-259.

41

Liu, L.; Ruiz, D. A.; Munz, D.; Bertrand, G. A singlet phosphinidene stable at room temperature. Chem 2016, 1, 147-153.

Nano Research
Pages 2519-2526
Cite this article:
Xiao Z, Qiao J, Lu W, et al. Deriving phosphorus atomic chains from few-layer black phosphorus. Nano Research, 2017, 10(7): 2519-2526. https://doi.org/10.1007/s12274-017-1456-z

695

Views

26

Crossref

N/A

Web of Science

30

Scopus

0

CSCD

Altmetrics

Received: 14 November 2016
Revised: 01 January 2017
Accepted: 02 January 2017
Published: 03 April 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return