AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tungsten diselenide nanoplates as advanced lithium/sodium ion electrode materials with different storage mechanisms

Wanfeng Yang1Jiawei Wang2Conghui Si1Zhangquan Peng2( )Zhonghua Zhang1( )
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education) School of Materials Science and Engineering Shandong University, Jingshi Road 17923Jinan 250061 China
State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of SciencesChangchun 130022 China
Show Author Information

Graphical Abstract

Abstract

Transition-metal dichalcogenides (TMDs) exhibit immense potential as lithium/ sodium-ion electrode materials owing to their sandwich-like layered structures. To optimize their lithium/sodium-storage performance, two issues should be addressed: fundamentally understanding the chemical reaction occurring in TMD electrodes and developing novel TMDs. In this study, WSe2 hexagonal nanoplates were synthesized as lithium/sodium-ion battery (LIB/SIB) electrode materials. For LIBs, the WSe2-nanoplate electrodes achieved a stable reversible capacity and a high rate capability, as well as an ultralong cycle life of up to 1,500 cycles at 1,000 mA·g–1. Most importantly, in situ Raman spectroscopy, ex situ X-ray diffraction (XRD), transmission electron microscopy, and electrochemical impedance spectroscopy measurements performed during the discharge–charge process clearly verified the reversible conversion mechanism, which can be summarized as follows: WSe2 + 4Li+ + 4e ↔ W + 2Li2Se. The WSe2 nanoplates also exhibited excellent cycling performance and a high rate capability as SIB electrodes. Ex situ XRD and Raman spectroscopy results demonstrate that WSe2 reacted with Na+ more easily and thoroughly than with Li+ and converted to Na2Se and tungsten in the 1st sodiated state. The subsequent charging reaction can be expressed as Na2Se → Se + 2Na+ + 2e, which differs from the traditional conversion mechanism for LIBs. To our knowledge, this is the first systematic exploration of the lithium/sodium-storage performance of WSe2 and the mechanism involved.

Electronic Supplementary Material

Download File(s)
nr-10-8-2584_ESM.pdf (1.2 MB)

References

1

Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 2013, 46, 1053–1061.

2

Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657.

3

Wagemaker, M.; Mulder, F. M. Properties and promises of nanosized insertion materials for Li-ion batteries. Acc. Chem. Res. 2013, 46, 1206–1215.

4

Lee, K. T.; Jeong, S.; Cho, J. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries. Acc. Chem. Res. 2013, 46, 1161–1170.

5

Chang, K.; Chen, W. X. L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 2011, 5, 4720–4728.

6

Liu, Y.; Zhu, M. Q.; Chen, D. Sheet-like MoSe2/C composites with enhanced Li-ion storage properties. J. Mater. Chem. A 2015, 3, 11857–11862.

7

Zhao, Y.; Li, X. F.; Yan, B.; Li, D. J.; Lawes, S.; Sun, X. L. Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: A review. J. Power Sources 2015, 274, 869–884.

8

Masarapu, C.; Subramanian, V.; Zhu, H. W.; Wei, B. Q. Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li ion batteries. Adv. Funct. Mater. 2009, 19, 1008–1014.

9

Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutierrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.

10

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two- dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

11

Keyshar, K.; Gong, Y. J.; Ye, G. L.; Brunetto, G.; Zhou, W.; Cole, D. P.; Hackenberg, K.; He, Y. M.; Machado, L.; Kabbani, M. et al. Chemical vapor deposition of monolayer rhenium disulfide (ReS2). Adv. Mater. 2015, 27, 4640– 4648.

12

Koski, K. J.; Cui, Y. The new skinny in two-dimensional nanomaterials. ACS Nano 2013, 7, 3739–3743.

13

Hwang, H.; Kim, H.; Cho, J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011, 11, 4826–4830.

14

Ko, Y. N.; Choi, S. H.; Park, S. B.; Kang, Y. C. Hierarchical MoSe2 yolk–shell microspheres with superior Na-ion storage properties. Nanoscale 2014, 6, 10511–10515.

15

Yang, X.; Zhang, Z. A.; Fu, Y.; Li, Q. Porous hollow carbon spheres decorated with molybdenum diselenide nanosheets as anodes for highly reversible lithium and sodium storage. Nanoscale 2015, 7, 10198–10203.

16

Chen, R. J.; Zhao, T.; Wu, W. P.; Wu, F.; Li, L.; Qian, J.; Xu, R.; Wu, H. M.; Albishri, H. M.; Al-Bogami, A. S. et al. Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries. Nano Lett. 2014, 14, 5899–5904.

17

Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing high- performance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13, 1983–1990.

18

Wang, H. T.; Kong, D. S.; Johanes, P.; Cha, J. J.; Zheng, G. Y.; Yan, K.; Liu, N.; Cui, Y. MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett. 2013, 13, 3426–3433.

19

Kim, J.; Hong, X. P.; Jin, C. H.; Shi, S.-F.; Chang, C.-Y. S.; Chiu, M.-H.; Li, L.-J.; Wang, F. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 2014, 346, 1205–1208.

20

Pospischil, A.; Furchi, M. M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 2014, 9, 257–261.

21

Wang, X. Q.; Chen, Y. F.; Zheng, B. J.; Qi, F.; He, J. R.; Li, P. J.; Zhang, W. L. Few-layered WSe2 nanoflowers anchored on graphene nanosheets: A highly efficient and stable electrocatalyst for hydrogen evolution. Electrochim. Acta 2016, 222, 1293–1299.

22

Wang, X. Q.; Chen, Y. F.; Qi, F.; Zheng, B. J.; He, J. R.; Li, Q.; Li, P. J.; Zhang, W. L.; Li, Y. R. Interwoven WSe2/CNTs hybrid network: A highly efficient and stable electrocatalyst for hydrogen evolution. Electrochem. Commun. 2016, 72, 74–78.

23

Wang, X. Q.; Chen, Y. F.; Zheng, B. J.; Qi, F.; He, J. R.; Li, Q.; Li, P. J.; Zhang, W. L. Graphene-like WSe2 nanosheets for efficient and stable hydrogen evolution. J. Alloys Compd. 2017, 691, 698–704.

24

Zhang, J.; Yin, Y. X.; You, Y.; Yan, Y.; Guo, Y. G. A high-capacity tellurium@carbon anode material for lithium- ion batteries. Energy Technol. 2014, 2, 757–762.

25

Kim, H. S.; Arthur, T. S.; Allred, G. D.; Zajicek, J.; Newman, J. G.; Rodnyansky, A. E.; Oliver, A. G.; Boggess, W. C.; Muldoon, J. Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2011, 2, 427.

26

Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 2014, 7, 209–231.

27

Yang, W. F.; Wang, J. W.; Si, C. H.; Peng, Z. Q.; Frenzel, J.; Eggeler, G.; Zhang, Z. H. [001] preferentially-oriented 2D tungsten disulfide nanosheets as anode materials for superior lithium storage. J. Mater. Chem. A 2015, 3, 17811–17819.

28

Pumera, M.; Sofer, Z.; Ambrosi, A. Layered transition metal dichalcogenides for electrochemical energy generation and storage. J. Mater. Chem. A 2014, 2, 8981–8987.

29

Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite—A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854–3859.

30

Lu, C. X.; Liu, W.-W.; Li, H.; Tay, B. K. A binder-free CNT network-MoS2 composite as a high performance anode material in lithium ion batteries. Chem. Commun. 2014, 50, 3338–3340.

31

Xiong, F. Y.; Cai, Z. Y.; Qu, L. B.; Zhang, P. F.; Yuan, Z. F.; Asare, O. K.; Xu, W. W.; Lin, C.; Mai, L. Q. Three-dimensional crumpled reduced graphene oxide/MoS2 nanoflowers: A stable anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 12625–12630.

32

Fang, X. P.; Hua, C. X.; Wu, C. R.; Wang, X. F.; Shen, L. Y.; Kong, Q. Y.; Wang, J. Z.; Hu, Y. S.; Wang, Z. X.; Chen, L. Q. Synthesis and electrochemical performance of graphene- like WS2. Chem.—Eur. J. 2013, 19, 5694–5700.

33

Liu, Y.; Wang, W.; Wang, Y. W.; Peng, X. S. Homogeneously assembling like-charged WS2 and GO nanosheets lamellar composite films by filtration for highly efficient lithium ion batteries. Nano Energy 2014, 7, 25–32.

34

Liu, Y.; Wang, W.; Huang, H. B.; Gu, L.; Wang, Y. W.; Peng, X. S. The highly enhanced performance of lamellar WS2 nanosheet electrodes upon intercalation of single-walled carbon nanotubes for supercapacitors and lithium ions batteries. Chem. Commun. 2014, 50, 4485–4488.

35

David, L.; Bhandavat, R.; Barrera, U.; Singh, G. Polymer- derived ceramic functionalized MoS2 composite paper as a stable lithium-ion battery electrode. Sci. Rep. 2015, 5, 9792.

36

Kim, S.-W.; Seo, D.-H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.

37

Zhou, T. F.; Pang, W. K.; Zhang, C. F.; Yang, J. P.; Chen, Z. X.; Liu, H. K.; Guo, Z. P. Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 2014, 8, 8323–8333.

38

Lu, Y. H.; Wang, L.; Cheng, J. G.; Goodenough, J. B. Prussian blue: A new framework of electrode materials for sodium batteries. Chem. Commun. 2012, 48, 6544–6546.

39

Wang, J. J.; Luo, C.; Gao, T.; Langrock, A.; Mignerey, A. C.; Wang, C. S. An advanced MoS2/carbon anode for high- performance sodium-ion batteries. Small 2015, 11, 473–481.

40

Su, D. W.; Dou, S. X.; Wang, G. X. WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. Chem. Commun. 2014, 50, 4192–4195.

41

Novák, P.; Goers, D.; Hardwick, L.; Holzapfel, M.; Scheifele, W.; Ufheil, J.; Würsig, A. Advanced in situ characterization methods applied to carbonaceous materials. J. Power Sources 2005, 146, 15–20.

42

Ambrosi, A.; Sofer, Z.; Pumera, M. 2H→1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem. Commun. 2015, 51, 8450–8453.

43

Huang, J.-K.; Pu, J.; Hsu, C.-L.; Chiu, M.-H.; Juang, Z.-Y.; Chang, Y.-H.; Chang, W.-H.; Iwasa, Y.; Takenobu, T.; Li, L.-J. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 2014, 8, 923–930.

44

Chen, J. Y.; Liu, B.; Liu, Y. P.; Tang, W.; Nai, C. T.; Li, L. J.; Zheng, J.; Gao, L. B.; Zheng, Y.; Shin, H. S. et al. Chemical vapor deposition of large-sized hexagonal WSe2 crystals on dielectric substrates. Adv. Mater. 2015, 27, 6722–6727.

45

Sang, Y. H.; Zhao, Z. H.; Zhao, M. W.; Hao, P.; Leng, Y. H.; Liu, H. From UV to near-infrared, WS2 nanosheet: A novel photocatalyst for full solar light spectrum photodegradation. Adv. Mater. 2015, 27, 363–369.

46

Yang, L. C.; Wang, S. N.; Mao, J. J.; Deng, J. W.; Gao, Q. S.; Tang, Y.; Schmidt, O. G. Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv. Mater. 2013, 25, 1180–1184.

47

Cao, X. H.; Shi, Y. M.; Shi, W. H.; Rui, X. H.; Yan, Q. Y.; Kong, J.; Zhang, H. Preparation of MoS2-coated three- dimensional graphene networks for high-performance anode material in lithium-ion batteries. Small 2013, 9, 3433–3438.

48

Yao, J. Y.; Liu, B. R.; Ozden, S.; Wu, J. J.; Yang, S. B.; Rodrigues, M.-T. F.; Kalaga, K.; Dong, P.; Xiao, P.; Zhang, Y. H. et al. 3D nanostructured molybdenum diselenide/graphene foam as anodes for long-cycle life lithium-ion batteries. Electrochim. Acta 2015, 176, 103–111.

49

Wu, Q.; Jiao, L. F.; Du, J.; Yang, J. Q.; Guo, L. J.; Liu, Y. C.; Wang, Y. J.; Yuan, H. T. One-pot synthesis of three- dimensional SnS2 hierarchitectures as anode material for lithium-ion batteries. J. Power Sources 2013, 239, 89–93.

50

Fang, X. P.; Guo, X. W.; Mao, Y.; Hua, C. X.; Shen, L. Y.; Hu, Y. S.; Wang, Z. X.; Wu, F.; Chen, L. Q. Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries. Chem.—Asian J. 2012, 7, 1013–1017.

51

Wang, X. F.; Shen, X.; Wang, Z. X.; Yu, R. C.; Chen, L. Q. Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation. ACS Nano 2014, 8, 11394–11400.

52

Li, H.; Lu, G.; Wang, Y. L.; Yin, Z. Y.; Cong, C. X.; He, Q. Y.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. Mechanical exfoliation and characterization of single-and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 2013, 9, 1974–1981.

53

Grugeon, S.; Laruelle, S.; Herrera-Urbina, R.; Dupont, L.; Poizot, P.; Tarascon, J. M. Particle size effects on the electrochemical performance of copper oxides toward lithium. J. Electrochem. Soc. 2001, 148, A285–A292.

54

Yang, W. F.; Cheng, G. H.; Dong, C. Q.; Bai, Q. G.; Chen, X. T.; Peng, Z. Q.; Zhang, Z. H. NiO nanorod array anchored Ni foam as a binder-free anode for high-rate lithium ion batteries. J. Mater. Chem. A 2014, 2, 20022–20029.

55

Lee, H.-W.; Muralidharan, P.; Ruffo, R.; Mari, C. M.; Cui, Y.; Kim, D. K. Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett. 2010, 10, 3852–3856.

56

Zhang, Z. A.; Yang, X.; Fu, Y.; Du, K. Ultrathin molybdenum diselenide nanosheets anchored on multi-walled carbon nanotubes as anode composites for high performance sodium-ion batteries. J. Power Sources 2015, 296, 2–9.

57

Share, K.; Lewis, J.; Oakes, L.; Carter, R. E.; Cohn, A. P.; Pint, C. L. Tungsten diselenide (WSe2) as a high capacity, low overpotential conversion electrode for sodium ion batteries. RSC Adv. 2015, 5, 101262–101267.

58

Han, K.; Liu, Z.; Ye, H. Q.; Dai, F. Flexible self-standing graphene-Se@CNT composite film as a binder-free cathode for rechargeable Li-Se batteries. J. Power Sources 2014, 263, 85–89.

Nano Research
Pages 2584-2598
Cite this article:
Yang W, Wang J, Si C, et al. Tungsten diselenide nanoplates as advanced lithium/sodium ion electrode materials with different storage mechanisms. Nano Research, 2017, 10(8): 2584-2598. https://doi.org/10.1007/s12274-017-1460-3

763

Views

68

Crossref

N/A

Web of Science

70

Scopus

1

CSCD

Altmetrics

Received: 29 November 2016
Revised: 29 December 2016
Accepted: 01 January 2017
Published: 29 March 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return