AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Flexible electronic eardrum

Yang GuXuewen WangWen GuYongjin WuTie LiTing Zhang( )
Suzhou Institute of Nano-Tech and Nano-Bionics398 Ruoshui Road, i-LabSuzhou125123China
Show Author Information

Graphical Abstract

Abstract

Flexible mechanosensors with a high sensitivity and fast response speed may advance the wearable and implantable applications of healthcare devices, such as real-time heart rate, pulse, and respiration monitoring. In this paper, we introduce a novel flexible electronic eardrum (EE) based on single-walled carbon nanotubes, poly-ethylene, and poly-dimethylsiloxane with micro-structured pyramid arrays. The EE device shows a high sensitivity, high signal-to-noise ratio (approximately 55 dB), and fast response time (76.9 μs) in detecting and recording sound within a frequency domain of 20–13, 000 Hz. The mechanism for sound detection is investigated and the sensitivity is determined using the micro-structure, thickness, and strain state. We also demonstrated that the device is able to distinguish human voices. This unprecedented performance of the flexible electronic eardrum has implications for many applications such as implantable acoustical bioelectronics and personal voice recognition.

Electronic Supplementary Material

Download File(s)
nr-10-8-2683_ESM.pdf (2.3 MB)

References

1

Pan, L. J.; Chortos, A.; Yu, G. H.; Wang, Y. Q.; Isaacson, S.; Allen, R.; Shi, Y.; Dauskardt, R.; Bao, Z. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 2014, 5, 3002.

2

Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.

3

Takei, K.; Takahashi, T.; Ho, J. C.; Ko, H.; Gillies, A. G.; Leu, P. W.; Fearing, R. S.; Javey, A. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 2010, 9, 821–826.

4

Kim, J.; Lee, M.; Shim, H. J.; Ghaffari, R.; Cho, H. R.; Son, D.; Jung, Y. H.; Soh, M.; Choi, C.; Jung, S. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 2014, 5, 5747.

5

Turner, A. P. F.; Magan, N. Electronic noses and disease diagnostics. Nat. Rev. Micro. 2004, 2, 161–166.

6

Peris, M.; Escuder-Gilabert, L. A 21st century technique for food control: Electronic noses. Anal. Chim. Acta 2009, 638, 1–15.

7

Röck, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem. Rev. 2008, 108, 705–725.

8

Henning, A.; Swaminathan, N.; Godkin, A.; Shalev, G.; Amit, I.; Rosenwaks, Y. Tunable diameter electrostatically formed nanowire for high sensitivity gas sensing. Nano Res. 2015, 8, 2206–2215.

9

Song, Y. M.; Xie, Y. Z.; Malyarchuk, V.; Xiao, J. L.; Jung, I.; Choi, K. J.; Liu, Z. J.; Park, H.; Lu, C. F.; Kim, R. H. et al. Digital cameras with designs inspired by the arthropod eye. Nature 2013, 497, 95–99.

10

Dagdeviren, C.; Su, Y. W.; Joe, P.; Yona, R.; Liu, Y. H.; Kim, Y. S.; Huang, Y. A.; Damadoran, A. R.; Xia, J.; Martin, L. W. et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 2014, 5, 4496.

11

Park, J.; Kim, M.; Lee, Y.; Lee, H. S.; Ko, H. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv. 2015, 1, e1500661.

12

Someya, T.; Kato, Y.; Sekitani, T.; Iba, S.; Noguchi, Y.; Murase, Y.; Kawaguchi, H.; Sakurai, T. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. USA 2005, 102, 12321–12325.

13

Yao, H. B.; Ge, J.; Wang, C. F.; Wang, X.; Hu, W.; Zheng, Z. J.; Ni, Y.; Yu, S. H. A flexible and highly pressuresensitive graphene-polyurethane sponge based on fractured microstructure design. Adv. Mater. 2013, 25, 6692–6698.

14

Hou, C. Y.; Wang, H. Z.; Zhang, Q. H.; Li, Y. G.; Zhu, M. F. Highly conductive, flexible, and compressible all-graphene passive electronic skin for sensing human touch. Adv. Mater. 2014, 26, 5018–5024.

15

Pang, C.; Lee, G. Y.; Kim, T. I.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. A flexible and highly sensitive straingauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11, 795–801.

16

Yi, L. Z.; Jiao, W. H.; Zhu, C. M.; Wu, K.; Zhang, C.; Qian, L. H.; Wang, S.; Jiang, Y. T.; Yuan, S. L. Ultrasensitive strain gauge with tunable temperature coefficient of resistivity. Nano Res. 2016, 9, 1346–1357.

17

Yi, L. Z.; Jiao, W. H.; Wu, K.; Qian, L. H.; Yu, X. X.; Xia, Q.; Mao, K. M.; Yuan, S. L.; Wang, S.; Jiang, Y. T. Nanoparticle monolayer-based flexible strain gauge with ultrafast dynamic response for acoustic vibration detection. Nano Res. 2015, 8, 2978–2987.

18

Wang, Y.; Yang, T. T.; Lao, J. C.; Zhang, R. J.; Zhang, Y. Y.; Zhu, M.; Li, X.; Zang, X. B.; Wang, K. L.; Yu, W. J. et al. Ultra-sensitive graphene strain sensor for sound signal acquisition and recognition. Nano Res. 2015, 8, 1627–1636.

19

Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792.

20

Park, S.; Kim, H.; Vosgueritchian, M.; Cheon, S.; Kim, H.; Koo, J. H.; Kim, T. R.; Lee, S.; Schwartz, G.; Chang, H. et al. Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes. Adv. Mater. 2014, 26, 7324–7332.

21

Zang, Y. P.; Zhang, F. J.; Huang, D. Z.; Gao, X. K.; Di, C. A.; Zhu, D. B. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nat. Commun. 2015, 6, 6269.

22

Zhou, J.; Gu, Y. D.; Fei, P.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Flexible piezotronic strain sensor. Nano Lett. 2008, 8, 3035–3040.

23

Fan, F. -R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and selfpowered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.

24

Park, H.; Jeong, Y. R.; Yun, J.; Hong, S. Y.; Jin, S.; Lee, S. J.; Zi, G.; Ha, J. S. Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars. ACS Nano 2015, 9, 9974–9985.

25

Choong, C. L.; Shim, M. B.; Lee, B. S.; Jeon, S.; Ko, D. S.; Kang, T. H.; Bae, J.; Lee, S. H.; Byun, K. E.; Im, J. et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 2014, 26, 3451–3458.

26

Zhu, B. W.; Niu, Z. Q.; Wang, H.; Leow, W. R.; Wang, H.; Li, Y. G.; Zheng, L. Y.; Wei, J.; Huo, F. W.; Chen, X. D. Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small 2014, 10, 3625–3631.

27

Cao, Q.; Rogers, J. A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 2009, 21, 29–53.

28

Gruner, G. Carbon nanotube films for transparent and plastic electronics. J. Mater. Chem. 2006, 16, 3533–3539.

29

Preston, C.; Song, D.; Dai, J. Q.; Tsinas, Z.; Bavier, J.; Cumings, J.; Ballarotto, V.; Hu, L. B. Scalable nanomanufacturing of surfactant-free carbon nanotube inks for spray coatings with high conductivity. Nano Res. 2015, 8, 2242–2250.

30

Johnston, I. D.; McCluskey, D. K.; Tan, C. K. L.; Tracey, M. C. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 2014, 24, 035017.

31

Tee, B. C. K.; Chortos, A.; Dunn, R. R.; Schwartz, G.; Eason, E.; Bao, Z. A. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv. Funct. Mater. 2014, 24, 5427–5434.

32

Miao, J. M.; Lin, R. M.; Chen, L. Q.; Zou, Q. B.; Lim, S. Y.; Seah, S. H. Design considerations in micromachined silicon microphones. Microelectron. J. 2002, 33, 21–28.

33
Boersma, P.; Weenink, D. PRAAT: Doing phonetics by computer. www.praat.org (accessed Oct 2, 2016).
34

Cartei, V.; Reby, D. Acting gay: Male actors shift the frequency components of their voices towards female values when playing homosexual characters. J. Nonverbal Behav. 2012, 36, 79–93.

Nano Research
Pages 2683-2691
Cite this article:
Gu Y, Wang X, Gu W, et al. Flexible electronic eardrum. Nano Research, 2017, 10(8): 2683-2691. https://doi.org/10.1007/s12274-017-1470-1

666

Views

36

Crossref

N/A

Web of Science

37

Scopus

4

CSCD

Altmetrics

Received: 12 October 2016
Revised: 30 December 2016
Accepted: 02 January 2017
Published: 26 April 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return