Graphical Abstract

The probe-assisted integration of imaging and therapy into a single modality offers significant advantages in bio-applications. As a newly developed photoacoustic (PA) mechanism, plasmon-mediated nanocavitation, whereby photons are effectively converted into PA shockwaves, has excellent advantages for image-guided therapy. In this study, by simulating the laser absorption, temperature field, and nanobubble dynamics using both finite-element analysis and computational fluid dynamics, we quantified the cavitation-induced PA conversion efficiency of a water-immersed gold nanosphere, revealing new insights. Interestingly, sequential multi-bubble emission accompanied by high PA signal production occur under a single high-dose pulse of laser irradiation, enabling a cavitation-induced PA conversion efficiency up to 2%, which is ~50 times higher than that due to thermal expansion. The cavitation-induced PA signal has unique frequency characteristics, which may be useful for a new approach for in vivo nanoparticle tracking. Our work offers theoretical guidance for accurate diagnosis and controllable therapy based on plasmon-mediated nanocavitation.
Bell, A. G. On the production and reproduction of sound by light. Am. J. Sci. 1880, 20, 305–324.
Zhang, H. F.; Maslov, K.; Stoica, G.; Wang, L. V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 2006, 24, 848–851.
Wang, L. V.; Hu, S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science 2012, 335, 1458–1462.
Xiang, L. Z; Wang, B.; Ji, L. J.; Jiang, H. B. 4-D photoacoustic tomography. Sci. Rep. 2013, 3, 1113.
Kruger, R. A.; Lam, R. B.; Reinecke, D. R.; Del Rio, S. P.; Doyle, R. P. Photoacoustic angiography of the breast. Med. Phys. 2010, 37, 6096–6100.
Fang, H.; Maslov, K.; Wang, L. V. Photoacoustic Doppler effect from flowing small light-absorbing particles. Phys. Rev. Lett. 2007, 99, 184501
Liu, Y. Y.; Yang, X. Q.; Zhu, D.; Shi, R.; Luo, Q. M. Optical clearing agents improve photoacoustic imaging in the optical diffusive regime. Opt. Lett. 2013, 38, 4236–4239.
Oraevsky, A. A.; Jacques, S. L.; Tittel, F. K. Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress. Appl. Opt. 1997, 36, 402–415.
Zhang, E. Z.; Laufer, J. G.; Pedley, R. B.; Beard, P. C. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy. Phys. Med. Biol. 2009, 54, 1035–1046.
Zhang, J.; Yang, S. H.; Ji, X. R.; Zhou, Q.; Xing, D. Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: Ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation. J. Am. Coll. Cardiol. 2014, 64, 385–390.
Wang, X. D.; Pang, Y. J.; Ku, G.; Xie, X. Y.; Stoica, G.; Wang, L. V. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 2003, 21, 803–806.
Yang, S. H.; Xing, D.; Zhou, Q.; Xiang, L. Z.; Lao, Y. Q. Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography. Med. Phys. 2007, 34, 3294–3301.
Galanzha, E. I.; Shashkov, E. V.; Spring, P. M.; Suen, J. Y.; Zharov, V. P. In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Cancer Res. 2009, 69, 7926–7934.
Jiang, Y. Y.; Deng, Z. J.; Yang, D.; Deng, X.; Li, Q.; Sha, Y. L.; Li, C. H.; Xu, D. S. Gold nanoflowers for 3D volumetric molecular imaging of tumors by photoacoustic tomography. Nano Res. 2015, 8, 2152–2161.
De La Zerda, A.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z.; Levi, J.; Smith, B. R.; Ma, T. J.; Oralkan, O. et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 2008, 3, 557–562.
Chen, Y. S.; Frey, W.; Aglyamov, S.; Emelianov, S. Environment-dependent generation of photoacoustic waves from plasmonic nanoparticles. Small 2012, 8, 47–52.
Kim, C.; Favazza, C.; Wang, L. V. In vivo photoacoustic tomography of chemicals: High-resolution functional and molecular optical imaging at new depths. Chem. Rev. 2010, 110, 2756–2782.
Wang, L.; Yang, P. P.; Zhao, X. X.; Wang, H.; Self-assembled nanomaterials for photoacoustic imaging. Nanoscale 2016, 8, 2488-2509.
Ray, A.; Wang, X. D.; Lee, Y. E. K.; Hah, H. J.; Kim, G.; Chen, T.; Orringer, D. A.; Sagher, O.; Liu, X. J.; Kopelman, R. Targeted blue nanoparticles as photoacoustic contrast agent for brain tumor delineation. Nano Res. 2011, 4, 1163–1173.
Wang, Y. H.; Liao, A. H.; Chen, J. H.; Wang, C. R. C.; Li, P. C. Photoacoustic/ultrasound dual-modality contrast agent and its application to thermotherapy. J. Biomed. Opt. 2012, 17, 045001.
Wei, W.; Li, X.; Zhou, Q. F.; Shung, K. K.; Chen, Z. P. Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging. J. Biomed. Opt. 2011, 16, 106001.
Liu, Y.; Yin, J. J.; Nie, Z. H. Harnessing the collective properties of nanoparticle ensembles for cancer theranostics. Nano Res. 2014, 7, 1719–1730.
Wilson, K.; Homan, K.; Emelianov, S. Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat. Commun. 2012, 3, 618.
Dixon, A. J.; Hu, S.; Klibanov, A. L.; Hossack, J. A. Oscillatory dynamics and in vivo photoacoustic imaging performance of plasmonic nanoparticle-coated microbubbles. Small 2015, 11, 3066–3077.
Kang, B.; Yu, D. C.; Dai, Y. D.; Chang, S. Q.; Chen, D.; Ding, Y. T. Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as "Bomb" agents. Small 2009, 5, 1292–1301.
Zhou, F. F.; Wu, S. N.; Yuan, Y.; Chen, W. R.; Xing, D. Mitochondria-targeting photoacoustic therapy using single-walled carbon nanotubes. Small 2012, 8, 1543–1550.
Zhong, J. P.; Yang, S. H.; Wen, L. W.; Xing, D. Imagingguided photoacoustic drug release and synergistic chemophotoacoustic therapy with paclitaxel-containing nanoparticles. J. Control. Release 2016, 226, 77–87.
von Maltzahn, G.; Park, J. H.; Agrawal, A.; Bandaru, N. K.; Das, S. K.; Sailor, M. J.; Bhatia, S. N. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 2009, 69, 3892–3900.
Rothstein, J. P. Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 2010, 42, 89–109.
O'Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004, 209, 171–176.
Groeneveld, R. H.; Sprik, R.; Lagendijk, A. Femtosecond spectroscopy of electron–electron and electron–phonon energy relaxation in Ag and Au. Phys. Rev. B 1995, 51, 11433.
Furlani, E. P.; Karampelas, I. H.; Xie, Q. Analysis of pulsed laser plasmon-assisted photothermal heating and bubble generation at the nanoscale. Lab Chip 2012, 12, 3707–3719.
Ghosh, S. K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 2007, 107, 4797–4862.
Hatef, A.; Darvish, B.; Dagallier, A.; Davletshin, Y. R.; Johnston, W.; Kumaradas, J. C.; Rioux, D.; Meunier, M. Analysis of photoacoustic response from gold–silver alloy nanoparticles irradiated by short pulsed laser in water. J. Phys. Chem. C 2015, 119, 24075–24080.
Calasso, I. G.; Craig, W.; Diebold, G. J. Photoacoustic point source. Phys. Rev. Lett. 2001, 86, 3550–3553.
Menger, F. M. Laplace pressure inside micelles. J. Phys. Chem. 1979, 83, 893.
Pan, H. H.; Ritter, J. A.; Balbuena, P. B. Examination of the approximations used in determining the isosteric heat of adsorption from the Clausius–Clapeyron equation. Langmuir 1998, 14, 6323–6327.
Prosperetti, A. A generalization of the Rayleigh–Plesset equation of bubble dynamics. Phys. Fluids 1982, 25, 409–410.
Chorin, A. J. Numerical solution of the Navier–Stokes equations. Math. Comput. 1968, 22, 745–762.
Pelivanov, I. M.; Kopylova, D. S.; Podymova, N. B.; Karabutov, A. A. Optoacoustic method for determination of submicron metal coating properties: Theoretical consideration. J. Appl. Phys. 2009, 106, 013507.
Samara, G. A.; Morosin, B. Anharmonic effects in KTaO3: Ferroelectric mode, thermal expansion, and compressibility. Phys. Rev. B 1973, 8, 1256–1264.
Shi, Y. J.; Qin, H.; Yang, S. H.; Xing, D. Thermally confined shell coating amplifies the photoacoustic conversion efficiency of nanoprobes. Nano Res. 2016, 9, 3644–3655.
Albanese, A.; Chan, W. C. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 2011, 5, 5478–5489.
Hatef, A.; Meunier, M. Plasma-mediated photothermal effects in ultrafast laser irradiation of gold nanoparticle dimers in water. Opt. Express 2015, 23, 1967–1980.
Buffat, P.; Borel, J. P. Size effect on the melting temperature of gold particles. Phys. Rev. A 1976, 13, 2287–2298.
Koga, K.; Ikeshoji, T.; Sugawara, K. I. Size- and temperaturedependent structural transitions in gold nanoparticles. Phys. Rev. Lett. 2004, 92, 115507.
Boulais, é.; Lachaine, R.; Meunier, M. Plasma-mediated nanocavitation and photothermal effects in ultrafast laser irradiation of gold nanorods in water. J. Phys. Chem. C 2013, 117, 9386–9396.
Brujan, E. A. Stress wave emission from plasmonic nanobubbles. J. Phys. D: Appl. Phys. 2016, 50, 015304.