AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In situ fastening graphene sheets into a polyurethane sponge for the highly efficient continuous cleanup of oil spills

Zhuang Kong1Jinrong Wang1Xianyong Lu1( )Ying Zhu1( )Lei Jiang1,2
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of Chemistry and EnvironmentBeihang UniversityBeijing100191China
Laboratory of Bio-inspired Smart Interfacial ScienceTechnology Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
Show Author Information

Graphical Abstract

Abstract

Oil sorbents are an attractive option for oil-spill cleanup as they may be used for collection and complete removal of oil without adversely affecting the environment. However, traditional oil sorbents exhibit low oil/water separation efficiency and/or low oil-sorption capacity. In this study, an ultra-high performance graphene/polyurethane (PU) sponge has been successfully obtained by in situ polymerization in the presence of graphene dispersed in N-methylpyrrolidone (NMP). During polymerization, the NMP/graphene dispersion not only serves as a weak amine catalyst for the formation of the sponge, but promotes fixation of the graphene sheets in the framework of the PU sponge owing to the strong dipole interaction between NMP and graphene. The as-prepared graphene/PU sponge was used as an absorbing material for the continuous removal of oil from oil-spill water. The graphene/PU sponge can continuously and rapidly remove oils from immiscible oil/water mixtures in corrosive solutions, including strong acids and bases, hot water, and ice water, with an excellent separation efficiency of above 99.99%. In addition, the as-prepared graphene/PU sponge was effective in separating surfactant-stabilized emulsions with a high separation efficiency of > 99.91%.

Electronic Supplementary Material

Video
nr-10-5-1756_ESM_Movie_S1.avi
nr-10-5-1756_ESM_Movie_S2.avi
nr-10-5-1756_ESM_Movie_S3.avi
nr-10-5-1756_ESM_Movie_S4.avi
nr-10-5-1756_ESM_Movie_S5.avi
nr-10-5-1756_ESM_Movie_S6.avi
nr-10-5-1756_ESM_Movie_S7.avi
nr-10-5-1756_ESM_Movie_S8.avi
nr-10-5-1756_ESM_Movie_S9.avi
Download File(s)
nr-10-5-1756_ESM.pdf (1.6 MB)

References

1

Dalton, T.; Jin, D. Extent and frequency of vessel oil spills in US marine protected areas. Mar. Pollut. Bull. 2010, 60, 1939–1945.

2

Choi, S. J.; Kwon, T. H.; Im, H.; Moon, D. I.; Baek, D. J.; Seol, M. L.; Duarte, J. P.; Choi, Y. K. A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Appl. Mater. Inter. 2011, 3, 4552–4556.

3

Nguyen, S. T.; Feng, J. D.; Le, N. T.; Le, A. T. T.; Hoang, N.; Tan, V. B. C.; Duong, H. M. Cellulose aerogel from paper waste for crude oil spill cleaning. Ind. Eng. Chem. Res. 2013, 52, 18386–18391.

4

Zhu, Q.; Chu, Y.; Wang, Z. K.; Chen, N.; Lin, L.; Liu, F. T.; Pan, Q. M. Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. J. Mater. Chem. A 2013, 1, 5386–5393.

5

Adebajo, M. O.; Frost, R. L.; Kloprogge, J. T.; Carmody, O.; Kokot, S. Porous materials for oil spill cleanup: A review of synthesis and absorbing properties. J. Porous Mat. 2003, 10, 159–170.

6

Sayed, S. A.; Zayed, A. M. Investigation of the effectiveness of some adsorbent materials in oil spill clean-ups. Desalination 2006, 194, 90–100.

7

Wang, J. T.; Zheng, Y. A.; Wang, A. Q. Superhydrophobic kapok fiber oil-absorbent: Preparation and high oil absorbency. Chem. Eng. J. 2012, 213, 1–7.

8

Feng, L.; Zhang, Z. Y.; Mai, Z. H.; Ma, Y. M.; Liu, B. Q.; Jiang, L.; Zhu, D. B. A super-hydrophobic and superoleophilic coating mesh film for the separation of oil and water. Angew. Chem., Int. Ed. 2004, 43, 2012–2014.

9

Xue, Z. X.; Wang, S. T.; Lin, L.; Chen, L.; Liu, M. J.; Feng, L.; Jiang, L. A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv. Mater. 2011, 23, 4270–4273.

10

Wang, L. F.; Yang, S. Y.; Wang, J.; Wang, C. F.; Chen, L. Fabrication of superhydrophobic TPU film for oil-water separation based on electrospinning route. Mater. Lett. 2011, 65, 869–872.

11

Wu, L.; Zhang, J. P.; Li, B. C.; Wang, A. Q. Mimic nature, beyond nature: Facile synthesis of durable superhydrophobic textiles using organosilanes. J. Mater. Chem. B 2013, 1, 4756–4763.

12

Cao, Y. Z.; Zhang, X. Y.; Tao, L.; Li, K.; Xue, Z. X.; Feng, L.; Wei, Y. Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation. ACS Appl. Mater. Inter. 2013, 5, 4438–4442.

13

Zhang, J. P.; Seeger, S. Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv. Funct. Mater. 2011, 21, 4699–4704.

14

Zhang, M.; Wang, C. Y.; Wang, S. L.; Shi, Y. L.; Li, J. Fabrication of coral-like superhydrophobic coating on filter paper for water-oil separation. Appl. Surf. Sci. 2012, 261, 764–769.

15

Wu, L.; Zhang, J. P.; Li, B. C.; Wang, A. Q. Mechanicaland oil-durable superhydrophobic polyester materials for selective oil absorption and oil/water separation. J. Colloid Interf. Sci. 2014, 413, 112–117.

16

Wei, Q. F.; Mather, R. R.; Fotheringham, A. F.; Yang, R. D. Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery. Mar. Pollut. Bull. 2003, 46, 780–783.

17

Yang, J. S.; Cho, S. M.; Kim, B. K.; Narkis, M. Structured polyurethanes for oil uptake. J. Appl. Polym. Sci. 2005, 98, 2080–2087.

18

Peng, M.; Li, H. B.; Wu, L. J.; Zheng, Q.; Chen, Y.; Gu, W. F. Porous poly(vinylidene fluoride) membrane with highly hydrophobic surface. J. Appl. Polym. Sci. 2005, 98, 1358–1363.

19

Dai, C. A.; Liu, N.; Cao, Y. Z.; Chen, Y. N.; Lu, F.; Feng, L. Fast formation of superhydrophobic octadecylphosphonic acid (ODPA) coating for self-cleaning and oil/water separation. Soft Matter 2014, 10, 8116–8121.

20

Shi, H. C.; Shi, D. A.; Yin, L. G.; Yang, Z. H.; Luan, S. F.; Gao, J. F.; Zha, J. W.; Yin, J. H.; Li, R. K. Y. Ultrasonication assisted preparation of carbonaceous nanoparticles modified polyurethane foam with good conductivity and high oil absorption properties. Nanoscale 2014, 6, 13748–13753.

21

Mishra, P.; Balasubramanian, K. Nanostructured microporous polymer composite imprinted with superhydrophobic camphor soot, for emphatic oil-water separation. RSC Adv. 2014, 4, 53291–53296.

22

Huang, S. Y.; Shi, J. F. Monolithic macroporous carbon materials as high-performance and ultralow-cost sorbents for efficiently solving organic pollution. Ind. Eng. Chem. Res. 2014, 53, 4888–4893.

23

Kong, L. H.; Chen, X. H.; Yu, L. G.; Wu, Z. S.; Zhang, P. Y. Superhydrophobic cuprous oxide nanostructures on phosphor-copper meshes and their oil-water separation and oil spill cleanup. ACS Appl. Mater. Interfaces 2015, 7, 2616–2625.

24

Gu, J. C.; Xiao, P.; Chen, J.; Liu, F.; Huang, Y. J.; Li, G. Y.; Zhang, J. W.; Chen, T. Robust preparation of superhydrophobic polymer/carbon nanotube hybrid membranes for highly effective removal of oils and separation of water-inoil emulsions. J. Mater. Chem. A 2014, 2, 15268–15272.

25

Guo, Z. G.; Liu, W. M. Superhydrophobic spiral Co3O4 nanorod arrays. Appl. Phys. Lett. 2007, 90, 193108.

26

Wang, F. J.; Lei, S.; Xue, M. S.; Ou, J. F.; Li, C. Q.; Li, W. Superhydrophobic and superoleophilic miniature device for the collection of oils from water surfaces. J. Phys. Chem. C 2014, 118, 6344–6351.

27

Zhao, Y.; Hu, C. G.; Hu, Y.; Cheng, H. H.; Shi, G. Q.; Qu, L. T. A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem., Int. Ed. 2012, 51, 11371–11375.

28

Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617–621.

29

Ge, J.; Ye, Y. D.; Yao, H. B.; Zhu, X.; Wang, X.; Wu, L.; Wang, J. L.; Ding, H.; Yong, N.; He, L. H. et al. Pumping through porous hydrophobic/oleophilic materials: An alternative technology for oil spill remediation. Angew. Chem., Int. Ed. 2014, 53, 3612–3616.

30

Furukawa, M.; Takamatsu, K. Effects of amine catalysts on structure of polyurethane foams. Elastomers and Composites 1999, 34, 285–291.

31

Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun' ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

32

Qian, W.; Hao, R.; Hou, Y. L.; Tian, Y.; Shen, C. M.; Gao, H. J.; Liang, X. L. Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Res. 2009, 2, 706–712.

33

Wu, C.; Huang, X. Y.; Wu, X. F.; Qian, R.; Jiang, P. K. Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators. Adv. Mater. 2013, 25, 5658–5662.

34

Khosravi, M.; Azizian, S. Synthesis of a novel highly oleophilic and highly hydrophobic sponge for rapid oil spill cleanup. ACS Appl. Mater. Inter. 2015, 7, 25326–25333.

35

Chowdhury, S. R.; Jha, A.; Manna, U.; Sarma, K. S. S. Designing a single superabsorbent for separating oil from both layered as well as micron/submicron size emulsified oil/water mixtures by gamma radiation assisted grafting. RSC Adv. 2016, 6, 26086–26095.

Nano Research
Pages 1756-1766
Cite this article:
Kong Z, Wang J, Lu X, et al. In situ fastening graphene sheets into a polyurethane sponge for the highly efficient continuous cleanup of oil spills. Nano Research, 2017, 10(5): 1756-1766. https://doi.org/10.1007/s12274-017-1484-8
Part of a topical collection:

727

Views

48

Crossref

N/A

Web of Science

48

Scopus

0

CSCD

Altmetrics

Received: 21 November 2016
Revised: 03 January 2017
Accepted: 14 January 2017
Published: 10 March 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return