Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Quantum spin Hall (QSH) insulator is a new class of materials that is quickly becoming mainstream in condensed-matter physics. The main obstacle for the development of QSH insulators is that their strong interactions with substrates make them difficult to study experimentally. In this study, using density functional theory, we discovered that MoTe2 is a good match for a GeI monolayer. The thermal stability of a van der Waals GeI/MoTe2 heterosheet was examined via molecular-dynamics simulations. Simulated scanning tunneling microscopy revealed that the GeI monolayer perfectly preserves the bulked honeycomb structure of MoTe2. The GeI on MoTe2 was confirmed to maintain its topological band structure with a sizable indirect bulk bandgap of 0.24 eV by directly calculating the spin Chern number to be -1. As expected, the electron mobility of the GeI is enhanced by MoTe2 substrate restriction. According to deformation-potential theory with the effective-mass approximation, the electron mobility of GeI/MoTe2 was estimated as 372.7 cm2·s-1·V-1 at 300 K, which is 20 times higher than that of freestanding GeI. Our research shows that traditional substrates always destroy the topological states and hinder the electron transport in QSH insulators, and pave way for the further realization and utilization of QSH insulators at room temperature.
Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.
Moore, J. Topological insulators: The next generation. Nat. Phys. 2009, 5, 378–380.
Moore, J. E. The birth of topological insulators. Nature 2010, 464, 194–198.
Qi, X. -L.; Zhang, S. -C. The quantum spin Hall effect and topological insulators. Phys. Today 2010, 63, 33–38.
Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn. 2013, 82, 102001.
Hsieh, D.; Qian, D.; Wray, L.; Xia, Y.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. A topological Dirac insulator in a quantum spin Hall phase. Nature 2008, 452, 970-974.
Hsieh, D.; Xia, Y.; Wray, L.; Qian, D.; Pal, A.; Dil, J. H.; Osterwalder, J.; Meier, F.; Bihlmayer, G.; Kane, C. L. et al. Observation of unconventional quantum spin textures in topological insulators. Science 2009, 323, 919–922.
Kong, D. S.; Chen, Y. L.; Cha, J. J.; Zhang, Q. F.; Analytis, J. G.; Lai, K. J.; Liu, Z. K.; Hong, S. S.; Koski, K, J.; Mo, S. -K. et al. Ambipolar field effect in the ternary topological insulator (BixSb1-x)2Te3 by composition tuning. Nat. Nanotechnol. 2011, 6, 705–709.
Wang, Y. H.; Hsieh, D.; Sie, E. J.; Steinberg, H.; Gardner, D. R.; Lee, Y. S.; Jarillo-Herrero, P.; Gedik, N. Measurement of intrinsic Dirac fermion cooling on the surface of the topological insulator Bi2Se3 using time-resolved and angleresolved photoemission spectroscopy. Phys. Rev. Lett. 2012, 109, 127401.
Arakane, T.; Sato, T.; Souma, S.; Kosaka, K.; Nakayama, K.; Komatsu, M.; Takahashi, T.; Ren, Z.; Segawa, K.; Ando, Y. Tunable Dirac cone in the topological insulator Bi2–xSbxTe3–ySey. Nat. Commun. 2012, 3, 636.
Kane, C. L.; Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801.
Bernevig, B. A.; Hughes, T. L.; Zhang, S. -C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 2006, 314, 1757–1761.
König, M.; Wiedmann, S.; Brü ne, C.; Roth, A.; Buhmann, H.; Molenkamp, L. W.; Qi, X. L.; Zhang, S. C. Quantum spin Hall insulator state in HgTe quantum wells. Science 2007, 318, 766–770.
Dai, X.; Hughes, T. L.; Qi, X. -L.; Fang, Z.; Zhang, S. -C. Helical edge and surface states in HgTe quantum wells and bulk insulators. Phys. Rev. B 2008, 77, 125319.
Wada, M.; Murakami, S.; Freimuth, F.; Bihlmayer, G. Localized edge states in two-dimensional topological insulators: Ultrathin Bi films. Phys. Rev. B 2011, 83, 121310.
Ezawa, M. Spin valleytronics in silicene: Quantum spin Hall–quantum anomalous Hall insulators and single-valley semimetals. Phys. Rev. B 2013, 87, 155415.
Si, C.; Liu, J. W.; Xu, Y.; Wu, J.; Gu, B. L.; Duan, W. H. Functionalized germanene as a prototype of large-gap twodimensional topological insulators. Phys. Rev. B 2014, 89, 115429.
Ma, Y. D.; Dai, Y.; Kou, L. Z.; Frauenheim, T.; Heine, T. Robust two-dimensional topological insulators in methylfunctionalized bismuth, antimony, and lead bilayer films. Nano Lett. 2015, 15, 1083–1089.
Chuang, F. C.; Yao, L. Z.; Huang, Z. Q.; Liu, Y. T.; Hsu, C. H.; Das, T.; Lin, H.; Bansil, A. Prediction of large-gap two-dimensional topological insulators consisting of bilayers of group Ⅲ elements with Bi. Nano Lett. 2014, 14, 2505–2508.
Li, X. R.; Dai, Y.; Ma, Y. D.; Wei, W.; Yu, L.; Huang, B. B. Prediction of large-gap quantum spin Hall insulator and Rashba-Dresselhaus effect in two-dimensional g-TlA (A = N, P, As, and Sb) monolayer films. Nano Res. 2015, 8, 2954–2962.
Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344–1347.
Ma, Y. D.; Kou, L. Z.; Li, X.; Dai, Y.; Smith, S. C.; Heine, T. Quantum spin Hall effect and topological phase transition in two-dimensional square transition-metal dichalcogenides. Phys. Rev. B 2015, 92, 085427.
Zhou, L. J.; Kou, L. Z.; Sun, Y.; Felser, C.; Hu, F. M.; Shan, G. C.; Smith, S. C.; Yan, B. H.; Frauenheim, T. New family of quantum spin Hall insulators in two-dimensional transition-metal halide with large nontrivial band gaps. Nano Lett. 2015, 15, 7867–7872.
Zhu, F. F.; Chen, W. J.; Xu, Y.; Gao, C. L.; Guan, D. D.; Liu, C. H.; Qian, D.; Zhang, S. -C.; Jia, J. -F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020–1025.
Xu, Y.; Tang, P. Z.; Zhang, S. -C. Large-gap quantum spin Hall states in decorated stanene grown on a substrate. Phys. Rev. B 2015, 92, 081112.
Ding, Y.; Wang, Y. L. Quasi-free-standing features of stanene/ stanane on InSe and GaTe nanosheets: A computational study. J. Phys. Chem. C 2015, 119, 27848–27854.
Kou, L. Z.; Hu, F. M.; Yan, B. H.; Wehling, T.; Felser, C.; Frauenheim, T.; Chen, C. F. Proximity enhanced quantum spin Hall state in graphene. Carbon 2015, 87, 418–423.
Kou, L. Z.; Wu, S. -C.; Felser, C.; Frauenheim, T.; Chen, C. F.; Yan, B. H. Robust 2D topological insulators in van der Waals heterostructures. ACS Nano 2014, 8, 10448–10454.
Bianco, E.; Butler, S.; Jiang, S. S.; Restrepo, O. D.; Windl, W.; Goldberger, J. E. Stability and exfoliation of germanane: A germanium graphane analogue. ACS Nano 2013, 7, 4414–4421.
Zhang, L.; Bampoulis, P.; Rudenko, A. N.; Yao, Q.; van Houselt, A.; Poelsema, B.; Katsnelson, M. I.; Zandvliet, H. J. W. Structural and electronic properties of germanene on MoS2. Phys. Rev. Lett. 2016, 116, 256804.
Jiang, S. S.; Butler, S.; Bianco, E.; Restrepo, O. D.; Windl, W.; Goldberger, J. E. Improving the stability and optical properties of germanane via one-step covalent methyl-termination. Nat. Commun. 2014, 5, 3389.
Zhou, L.; Xu, K.; Zubair, A.; Liao, A. D.; Fang, W. J.; Ouyang, F. P.; Lee, Y. H.; Ueno, K.; Saito, R.; Palacios, T. et al. Large-area synthesis of high-quality uniform few-layer MoTe2. J. Am. Chem. Soc. 2015, 137, 11892–11895.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Mostofi, A. A.; Yates, J. R.; Lee, Y. S.; Souza, I.; Vanderbilt, D.; Marzari, N. wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2008, 178, 685–699.
Ding, Y.; Wang, Y. L.; Ni, J.; Shi, L.; Shi, S. Q.; Tang, W. H. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Phys. B: Condens. Matter 2011, 406, 2254–2260.
Ma, Y. D.; Dai, Y.; Guo, M.; Niu, C. W.; Huang, B. B. Graphene adhesion on MoS2 monolayer: An ab initio study. Nanoscale 2011, 3, 3883–3887.
Yang, Y. Y.; Xu, Z.; Sheng, L.; Wang, B. G.; Xing, D. Y.; Sheng, D. N. Time-reversal-symmetry-broken quantum spin Hall effect. Phys. Rev. Lett. 2011, 107, 066602.
Niu, C. W.; Buhl, P. M.; Bihlmayer, G.; Wortmann, D.; Blügel, S.; Mokrousov, Y. Two-dimensional topological crystalline insulator and topological phase transition in TlSe and TlS monolayers. Nano Lett. 2015, 15, 6071–6075.
Zhang, H. B.; Lazo, C.; Blügel, S.; Heinze, S.; Mokrousov, Y. Electrically tunable quantum anomalous Hall effect in graphene decorated by 5d transition-metal adatoms. Phys. Rev. Lett. 2012, 108, 056802.
Li, X. R.; Dai, Y.; Li, M. M.; Wei, W.; Huang, B. B. Stable Si-based pentagonal monolayers: High carrier mobilities and applications in photocatalytic water splitting. J. Mater. Chem. A 2015, 3, 24055–24063.
Zhang, X.; Zhao, X. D.; Wu, D. H.; Jing, Y.; Zhou, Z. High and anisotropic carrier mobility in experimentally possible Ti2CO2 (MXene) monolayers and nanoribbons. Nanoscale 2015, 7, 16020–16025.
Xi, J. Y.; Long, M. Q.; Tang, L.; Wang, D.; Shuai, Z. G. First-principles prediction of charge mobility in carbon and organic nanomaterials. Nanoscale 2012, 4, 4348–4369.
Shao, Z. G.; Ye, X. S.; Yang, L.; Wang, C. L. First-principles calculation of intrinsic carrier mobility of silicene. J. Appl. Phys. 2013, 114, 093712.