AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

On-the-fly dopant redistribution in a silicon nanowire p–n junction

Dong-Il Moon( )Myeong-Lok SeolJin-Woo HanM. Meyyappan
Center for NanotechnologyNASA Ames Research CenterMoffett Field, CA94035USA
Show Author Information

Graphical Abstract

Abstract

Dopant redistribution in a silicon nanowire (SiNW) p–n junction is found to occur owing to self-heating effects. A SiNW is doped to form back-to-back diodes and is thermally isolated by an oxide layer on its bottom side and by air on the other sides. When a high level of current flows, the inner body temperature is found to increase enough to cause dopant diffusion and even to reach the silicon melting point due to Joule heating. This experimentally observed electrothermal behavior is also validated through numerical simulation. The conductivity change is dependent on the total power density and the change becomes permanent once the device suffers self-heating beyond a threshold point. Finally, the dopant redistribution is directly visualized using scanning capacitance microscopy for the first time.

Electronic Supplementary Material

Download File(s)
nr-10-8-2845_ESM.pdf (1.4 MB)

References

1

Cui, Y.; Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851–853.

2

Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Webber, E.; Russo, R.; Yang, P. D. Roomtemperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.

3

Cui, Y.; Zhong, Z. H.; Wang, D. L.; Wang, W. U.; Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 2003, 3, 149–152.

4

Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889.

5

Boukai, A. I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J. K.; Goddard, W. A., Ⅲ; Heath, J. R. Silicon nanowires as efficient thermoelectric materials. Nature 2008, 451, 168–171.

6

Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

7

Kim, K; Park, C; Kwon, D.; Kim, D.; Meyyappan, M.; Jeon, S.; Lee, J. S. troponin I (cTnI) with high sensitivity. Biosens. Bioelectron. 2016, 77, 695–701.

8

Meyyappan, M.; Sunkara, M. K. Inorganic Nanowires: Applications, Properties, and Characterization; CRC Press: Boca Raton, FL, 2010.

9

Westover, T.; Jones, R.; Huang, J. Y.; Wang, G.; Lai, E.; Talin, A. A. Photoluminescence, thermal transport, and breakdown in joule-heated GaN nanowires. Nano Lett. 2009, 9, 257–263.

10

Xu, Z.; Golberg, D.; Bando, Y. In situ TEM-STM recorded kinetics of boron nitride nanotube failure under current flow. Nano Lett. 2009, 9, 2251–2254.

11

Zhang, Q.; Qi, J. J.; Yang, Y.; Huang, Y. H.; Li, X.; Zhang, Y. Electrical breakdown of ZnO nanowires in metalsemiconductor- metal structure. Appl. Phys. Lett. 2010, 96, 253112.

12

Choi, S. J.; Moon, D. I.; Duarte, J. P.; Ahn, J. H.; Choi, Y. K. Physical observation of a thermo-morphic transition in a silicon nanowire. ACS Nano 2012, 6, 2378–2384.

13

Bakan, G.; Khan, N; Silva, H.; Gokirmak, A. High-temperature thermoelectric transport at small scales: Thermal generation, transport and recombination of minority carriers. Sci. Rep. 2013, 3, 2724.

14

Park, J. Y.; Moon, D. I.; Seol, M. L.; Jeon, C. H.; Jeon, G. J.; Han, J. W.; Kim, C. K.; Park, S. J.; Lee, H. C.; Choi, Y. K. Controllable electrical and physical breakdown of poly-crystalline silicon nanowires by thermally assisted electromigration. Sci. Rep. 2016, 6, 19314.

15

Zhao, J.; Sun, H. Y.; Dai, S.; Wang, Y.; Zhu, J. Electrical breakdown of nanowires. Nano Lett. 2011, 11, 4647–4651.

16

Wang, C.; Hu, Y. J.; Lieber, C. M.; Sun, S. H. Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc. 2008, 130, 8902–8903.

17

Park, I.; Li, Z. Y.; Pisano, A. P.; Williams, R. S. Selective surface functionalization of silicon nanowires via nanoscale joule heating. Nano Lett. 2007, 7, 3106–3111.

18

Hummelgård, M.; Zhang, R. Y.; Carlberg, T.; Vengust, D.; Dvorsek, D.; Mihailovic, D.; Olin, H. Nanowire transformation and annealing by joule heating. Nanotechnology 2010, 21, 165704.

19

Chen, C. C.; Lin, Y. S.; Sang, C. H.; Sheu, J. -T. Localized joule heating as a mask-free technique for the local synthesis of ZnO nanowires on silicon nanodevices. Nano Lett. 2011, 11, 4736–4741.

20

Nie, A. M.; Liu, J. B.; Dong, C. Z.; Wang, H. T. Electrical failure behaviors of semiconductor oxide nanowires. Nanotechnology 2011, 22, 405703.

21

Davami, K.; Ghassemi, H. M.; Sun, X. H.; Yassar, R. S.; Lee, J. S.; Meyyappan, M. In situ observation of morphological change in CdTe nano- and submicron wires. Nanotechnology 2011, 22, 435204.

22

Davami, K.; Ghassemi, H. M.; Yassar, R. S.; Lee, J. S.; Meyyappan, M. Thermal breakdown of ZnTe nanowires. ChemPhysChem 2012, 13, 347–352.

23

Kannam, P. J. Design concepts of high energy punchthrough structures. IEEE Trans. Electron Devices 1976, 23, 879–882.

24

de Cogan, D. Punch-through diode. Microelectronics 1976, 8, 20–23.

25

Zhuravlev, L. T. Concentration of hydroxyl groups on the surface of amorphous silicas. Langmuir 1987, 3, 316–318.

26

Young, G. J. Interaction of water vapor with silica surfaces. J. Colloid Sci. 1958, 13, 67–85.

27
Jan, C. -H.; Bhattacharya, U.; Brain, R.; Choi, S. -J.; Curello, G.; Gupta, G.; Hafez, W.; Jang, M.; Kang, M.; Komeyli, K. et al. A 22 nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate, optimized for ultra low power, high performance and high density SoC applications. In 2012 IEEE International Electron Devices Meeting, San Francisco, USA, 2012.https://doi.org/10.1109/IEDM.2012.6478969
28

Ernst, T. Controlling the polarity of silicon nanowire transistors. Science 2013, 340, 1414–1415.

29

Martin, C. Towards a new scale. Nat. Nanotechnol. 2016, 11, 112.

30
The International Technology Roadmap for Semiconductors [Online]. http://www.itrs2.net/itrs-reports.html (accessed on Nov 17, 2016).
31

Williams, C. C. Two-dimensional dopant profiling by scanning capacitance microscopy. Annu. Rev. Mater. Sci. 1999, 29, 471–504.

32

Vallett, A. L.; Minassian, S.; Kaszuba, P.; Datta, S.; Redwing, J. M.; Mayer, T. S. Fabrication and characterization of axially doped silicon nanowire tunnel field-effect transistors. Nano Lett. 2010, 10, 4813–4818.

33

Li, D. Y.; Wu, Y. Y.; Kim, P.; Shi, L.; Yang, P. D.; Majumdar, A. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 2003, 83, 2934–2936.

34

Chen, Y. F.; Li, D. Y.; Lukes, J. R.; Majumdar, A. Monte Carlo simulation of silicon nanowire thermal conductivity. J. Heat Transfer 2005, 127, 1129–1137.

35

Chen, R. K.; Hochbaum, A. I.; Murphy, P.; Moore, J.; Yang, P. D.; Majumdar, A. Thermal conductance of thin silicon nanowires. Phys. Rev. Lett. 2008, 101, 105501.

36

Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–168.

37

Doerk, G. S.; Carraro, C.; Maboudian, R. Single nanowire thermal conductivity measurements by Raman thermography. ACS Nano 2010, 4, 4908–4914.

38

Lee, J.; Lee, W.; Lim, J.; Yu, Y.; Kong, Q.; Urban, J. J.; Yang, P. D. Thermal transport in silicon nanowires at high temperature up to 700 K. Nano Lett. 2016, 16, 4133–4140.

Nano Research
Pages 2845-2855
Cite this article:
Moon D-I, Seol M-L, Han J-W, et al. On-the-fly dopant redistribution in a silicon nanowire p–n junction. Nano Research, 2017, 10(8): 2845-2855. https://doi.org/10.1007/s12274-017-1493-7

658

Views

5

Crossref

N/A

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 17 November 2016
Revised: 13 January 2017
Accepted: 21 January 2017
Published: 03 May 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return