AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Simple synthesis of a porous Sb/Sb2O3 nanocomposite for a high-capacity anode material in Na-ion batteries

Jun Pan1Nana Wang1,Yanli Zhou1,Xianfeng Yang2Wenyao Zhou3Yitai Qian1,4( )Jian Yang1( )
Key Laboratory of Colloid and Interface ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
Analytical and Testing CenterSouth China University of TechnologyGuangzhou510640China
Jinan Licheng No.2 High SchoolJinan250105China
Department of ChemistryHefei National Laboratory for Physical Sciences at MicroscaleUniversity of Science and Technology of ChinaHefei230026China

Present address: College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China Present address: School of Environment and Material Engineering, Yantai University, Yantai 264005, China

Show Author Information

Graphical Abstract

Abstract

High-capacity anode materials are highly desirable for sodium ion batteries. Here, a porous Sb/Sb2O3 nanocomposite is successfully synthesized by the mild oxidization of Sb nanocrystals in air. In the composite, Sb contributes good conductivity and Sb2O3 improves cycling stability, particularly within the voltage window of 0.02–1.5 V. It remains at a reversible capacity of 540 mAh·g–1 after 180 cycles at 0.66 A·g–1. Even at 10 A·g–1, the reversible capacity is still preserved at 412 mAh·g–1, equivalent to 71.6% of that at 0.066 A·g–1. These results are much better than Sb nanocrystals with a similar size and structure. Expanding the voltage window to 0.02–2.5 V includes the conversion reaction between Sb2O3 and Sb into the discharge/charge profiles. This would induce a large volume change and high structure strain/stress, deteriorating the cycling stability. The identification of a proper voltage window for Sb/Sb2O3 paves the way for its development in sodium ion batteries.

Electronic Supplementary Material

Download File(s)
nr-10-5-1794_ESM.pdf (2.5 MB)

References

1

Ji, L. W.; Rao, M. M.; Aloni, S.; Wang, L.; Cairns, E. J.; Zhang, Y. G. Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci. 2011, 4, 5053–5059.

2

Wang, H. K.; Lu, X.; Li, L. C.; Li, B. B.; Cao, D. X.; Wu, Q. Z.; Li, Z. H.; Yang, G.; Guo, B. L.; Niu, C. M. Synthesis of SnO2 versus Sn crystals within N-doped porous carbon nanofibers via electrospinning towards high-performance lithium ion batteries. Nanoscale 2016, 8, 7595–7603.

3

Xing, Z.; Ju, Z. C.; Yang, J.; Xu, H. Y.; Qian, Y. T. One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries. Nano Res. 2012, 5, 477–485.

4

Sun, Y.; Zhao, L.; Pan, H. L.; Lu, X.; Gu, L.; Hu, Y. S.; Li, H.; Armand, M.; Ikuhara, Y.; Chen, L. Q. et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 2013, 4, 1870.

5

Hong, Z. S.; Zhou, K. Q.; Huang, Z. G.; Wei, M. D. Isooriented anatase TiO2 mesocages as a high performance anode material for sodium-ion storage. Sci. Rep. 2015, 5, 11960.

6

Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. V.; Yang, Z. G.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787.

7

Legrain, F.; Sottmann, J.; Kotsis, K.; Gorantla, S.; Sartori, S.; Manzhos, S. Amorphous (glassy) carbon, a promising material for sodium ion battery anodes: A combined firstprinciples and experimental study. J. Phys. Chem. C 2015, 119, 13496–13501.

8

Wang, N. N.; Bai, Z. C.; Qian, Y. T.; Yang, J. Doublewalled Sb@TiO2?x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries. Adv. Mater. 2016, 28, 4126–4133.

9

Baggetto, L.; Ganesh, P.; Sun, C. N.; Meisner, R. A.; Zawodzinski, T. A.; Veith, G. M. Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: Experiment and theory. J. Mater. Chem. A 2013, 1, 7985–7994.

10

Hou, H. S.; Jing, M. J.; Yang, Y. C.; Zhu, Y. R.; Fang, L. B.; Song, W. X.; Pan, C. C.; Yang, X. M.; Ji, X. B. Sodium/lithium storage behavior of antimony hollow nanospheres for rechargeable batteries. ACS Appl. Mater. Interfaces 2014, 6, 16189–16196.

11

Kim, H.; Cho, J. Template synthesis of hollow Sb nanoparticles as a high-performance lithium battery anode material. Chem. Mater. 2008, 20, 1679–1681.

12

Walter, M.; Erni, R.; Kovalenko, M. V. Inexpensive antimony nanocrystals and their composites with red phosphorus as high-performance anode materials for Na-ion batteries. Sci. Rep. 2015, 5, 8418.

13

Wu, L.; Hu, X. H.; Qian, J. F.; Pei, F.; Wu, F. Y.; Mao, R. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy Environ. Sci. 2014, 7, 323–328.

14

Zhu, Y. J.; Han, X. G.; Xu, Y. H.; Liu, Y. H.; Zheng, S. Y.; Xu, K.; Hu, L. B.; Wang, C. S. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano 2013, 7, 6378–6386.

15

Zhang, N.; Liu, Y. C.; Lu, Y. Y.; Han, X. P.; Cheng, F. Y.; Chen, J. Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Res. 2015, 8, 3384–3393.

16

Wang, M.; Yang, Z. Z.; Wang, J. Q.; Li, W. H.; Gu, L.; Yu, Y. Sb nanoparticles encapsulated in a reticular amorphous carbon network for enhanced sodium storage. Small 2015, 11, 5381–5387.

17

Qiu, S.; Wu, X. Y.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Antimony nanocrystals encapsulated in carbon microspheres synthesized by a facile self-catalyzing solvothermal method for high-performance sodium-ion battery anodes. ACS Appl. Mater. Interfaces 2016, 8, 1337–1343.

18

Zhou, X. L.; Zhong, Y. R.; Yang, M.; Hu, M.; Wei, J. P.; Zhou, Z. Sb nanoparticles decorated N-rich carbon nanosheets as anode materials for sodium ion batteries with superior rate capability and long cycling stability. Chem. Commun. 2014, 50, 12888–12891.

19

Nithya, C.; Gopukumar, S. rGO/nano Sb composite: A high performance anode material for Na+ ion batteries and evidence for the formation of nanoribbons from the nano rGO sheet during galvanostatic cycling. J. Mater. Chem. A 2014, 2, 10516–10525.

20

Hou, H. S.; Jing, M. J.; Yang, Y. C.; Zhang, Y.; Song, W. X.; Yang, X. M.; Chen, J.; Chen, Q. Y.; Ji, X. B. Antimony nanoparticles anchored on interconnected carbon nanofibers networks as advanced anode material for sodium-ion batteries. J. Power Sources 2015, 284, 227–235.

21

Li, K. F.; Su, D. W.; Liu, H.; Wang, G. X. Antimony-carbongraphene fibrous composite as freestanding anode materials for sodium-ion batteries. Electrochim. Acta 2015, 177, 304–309.

22

Zhang, W.; Liu, Y. T.; Chen, C. J.; Li, Z.; Huang, Y. H.; Hu, X. L. Flexible and binder-free electrodes of Sb/rGO and Na3V2(PO4)3/rGO nanocomposites for sodium-ion batteries. Small 2015, 11, 3822–3829.

23

Li, L.; Seng, K. H.; Li, D.; Xia, Y. Y.; Liu, H. K.; Guo, Z. P. SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries. Nano Res. 2014, 7, 1466–1476.

24

Jackson, E. D.; Green, S.; Prieto, A. L. Electrochemical performance of electrodeposited Zn4Sb3 films for sodiumion secondary battery anodes. ACS Appl. Mater. Interfaces 2015, 7, 7447–7450.

25

Darwiche, A.; Toiron, M.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Performance and mechanism of FeSb2 as negative electrode for Na-ion batteries. J. Power Sources 2015, 280, 588–592.

26

Baggetto, L.; Marszewski, M.; Górka, J.; Jaroniec, M.; Veith, G. M. AlSb thin films as negative electrodes for Li-ion and Na-ion batteries. J. Power Sources 2013, 243, 699–705.

27

Allcorn, E.; Manthiram, A. NiSb-Al2O3-C nanocomposite anodes with long cycle life for Li-ion batteries. J. Phys. Chem. C 2014, 118, 811–822.

28

Zhao, Y. B.; Manthiram, A. High-capacity, high-rate Bi-Sb alloy anodes for lithium-ion and sodium-ion batteries. Chem. Mater. 2015, 27, 3096–3101.

29

Nam, D. H.; Hong, K. S.; Lim, S. J.; Kwon, H. S. Electrochemical synthesis of a three-dimensional porous Sb/Cu2Sb anode for Na-ion batteries. J. Power Sources 2014, 247, 423–427.

30

Liao, S.; Sun, Y.; Wang, J.; Cui, H.; Wang, C. X. Three dimensional self-assembly ZnSb nanowire balls with good performance as sodium ions battery anode. Electrochim. Acta 2016, 211, 11–17.

31

Hu, M. J.; Jiang, Y. Z.; Sun, W. P.; Wang, H. T.; Jin, C. H.; Yan, M. Reversible conversion-alloying of Sb2O3 as a highcapacity, high-rate, and durable anode for sodium ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 19449–19455.

32

Li, N.; Liao, S.; Sun, Y.; Song, H. W.; Wang, C. X. Uniformly dispersed self-assembled growth of Sb2O3/Sb@graphene nanocomposites on a 3D carbon sheet network for high Na-storage capacity and excellent stability. J. Mater. Chem. A 2015, 3, 5820–5828.

33

Hong, K. S.; Nam, D. H.; Lim, S. J.; Sohn, D. R.; Kim, T. H.; Kwon, H. S. Electrochemically synthesized Sb/Sb2O3 composites as high-capacity anode materials utilizing a reversible conversion reaction for Na-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 17264–17271.

34

Nam, D. H.; Hong, K. S.; Lim, S. J.; Kim, M. J.; Kwon, H. S. High-performance Sb/Sb2O3 anode materials using a polypyrrole nanowire network for Na-ion batteries. Small 2015, 11, 2885–2892.

35

Zhang, H. L.; Li, F.; Liu, C.; Tan, J.; Cheng, H. M. New insight into the solid electrolyte interphase with use of a focused ion beam. J. Phys. Chem. B 2005, 109, 22205–22211.

36

Gómez-Cámer, J. L.; Villevieille, C.; Novák, P. Antimony based negative electrodes for next generation Li-ion batteries. J. Mater. Chem. A 2013, 1, 13011–13016.

37

Wang, N. N.; Ma, X. J.; Xu, H. Y.; Chen, L.; Yue, J.; Niu, F. E.; Yang, J.; Qian, Y. T. Porous ZnMn2O4 microspheres as a promising anode material for advanced lithium-ion batteries. Nano Energy 2014, 6, 193–199.

38

Wang, N. N.; Chen, L.; Ma, X. J.; Yue, J.; Niu, F. E.; Xu, H. Y.; Yang, J.; Qian, Y. T. Facile synthesis of hierarchically porous NiO micro-tubes as advanced anode materials for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 16847–16850.

39

Lewandowski, A.; Swiderska-Mocek, A.; Waliszewski, L. Solid electrolyte interphase formation on metallic lithium. J. Solid State Electrochem. 2012, 16, 3391–3397.

40

Hui, J. S.; Burgess, M.; Zhang, J. R.; Rodríguez-López, J. Layer number dependence of Li+ intercalation on few-layer graphene and electrochemical imaging of its solid?electrolyte interphase evolution. ACS Nano 2016, 10, 4248–4257.

41

Yang, C. L.; Li, E. H.; Yang, Z. Z.; Gu, L.; Yu, Y. Nanoconfined antimony in sulfur and nitrogen co-doped three-dimensionally (3D) interconnected macroporous carbon for high-performance sodium-ion batteries. Nano Energy 2015, 18, 12–19.

42

Liu, S.; Feng, J. K.; Bian, X. F.; Liu, J.; Xu, H. The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries. Energy Environ. Sci. 2016, 9, 1229–1236.

43

Liu, Z. M.; Yu, X. Y.; Lou, X. W.; Paik, U. Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries. Energy Environ. Sci. 2016, 9, 2314–2318.

44

Yang, Y. C.; Yang, X. M.; Zhang, Y.; Hou, H. S.; Jing, M. J.; Zhu, Y. R.; Fang, L. B.; Chen, Q. Y.; Ji, X. B. Cathodically induced antimony for rechargeable Li-ion and Na-ion batteries: The influences of hexagonal and amorphous phase. J. Power Sources 2015, 282, 358–367.

Nano Research
Pages 1794-1803
Cite this article:
Pan J, Wang N, Zhou Y, et al. Simple synthesis of a porous Sb/Sb2O3 nanocomposite for a high-capacity anode material in Na-ion batteries. Nano Research, 2017, 10(5): 1794-1803. https://doi.org/10.1007/s12274-017-1501-y
Part of a topical collection:

718

Views

69

Crossref

N/A

Web of Science

69

Scopus

0

CSCD

Altmetrics

Received: 05 September 2016
Revised: 18 January 2017
Accepted: 31 January 2017
Published: 04 March 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return