AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Sandwich-structured nanocomposites of N-doped graphene and nearly monodisperse Fe3O4 nanoparticles as high-performance Li-ion battery anodes

Wen Qi1Xuan Li2Hui Li3Weikang Wu3Pei Li2Ying Wu1Chunjiang Kuang1Shaoxiong Zhou1( )Xiaolin Li4( )
Beijing Key Laboratory of Energy NanomaterialsAdvance Technology & Materials Co.LtdChina Iron & Steel Research Institute GroupBeijing100081China
School of Materials Science and EngineeringTianjin UniversityTianjin300072China
Key Laboratory for Liquid-Solid Structural Evolution and Processing of MaterialsMinistry of EducationShandong UniversityJinan250061China
Department of Stationary Energy StoragePacific Northwest National LaboratoryRichlandWashington99354USA
Show Author Information

Graphical Abstract

Abstract

Iron oxides have attracted considerable interest as abundant materials for high-capacity Li-ion battery anodes. However, their fast capacity fading owing to poorly controlled reversibility of the conversion reactions greatly hinders their application. Here, a sandwich-structured nanocomposite of N-doped graphene and nearly monodisperse Fe3O4 nanoparticles were developed as high-performance Li-ion battery anode. N-doped graphene serves as a conducting framework for the self-assembled structure and controls Fe3O4 nucleation through the interaction of N dopants, surfactant molecules, and iron precursors. Fe3O4 nanoparticles were well dispersed with a uniform diameter of ~15 nm. The unique sandwich structure enables good electron conductivity and Li-ion accessibility and accommodates a large volume change. Hence, it delivers good cycling reversibility and rate performance with a capacity of ~1, 227 mA·h·g–1 and 96.8% capacity retention over 1, 000 cycles at a current density of 3 A·g–1. Our work provides an ideal structure design for conversion anodes or other electrode materials requiring a large volume change.

Electronic Supplementary Material

Download File(s)
nr-10-9-2923_ESM.pdf (2 MB)

References

1

Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496-499.

2

Croguennec, L.; Palacin, M. R. Recent achievements on inorganic electrode materials for lithium-ion batteries. J. Am. Chem. Soc. 2015, 137, 3140-3156.

3

Wang, H. L.; Dai, H. J. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088-3113.

4

Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 2010, 3, 147-169.

5

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

6

Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364-5457.

7

Tuček, J.; Kemp, K. C.; Kim, K. S.; Zbořil, R. Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. ACS Nano 2014, 8, 7571-7612.

8

Zhang, H. W.; Zhou, L.; Noonan, O.; Martin, D. J.; Whittaker, A. K.; Yu, C. Z. Tailoring the void size of iron oxide@carbon yolk-shell structure for optimized lithium storage. Adv. Funct. Mater. 2014, 24, 4337-4342.

9

Yang, Y. Q.; Zhang, J. N.; Wu, X. C.; Fu, Y. S.; Wu, H. X.; Guo, S. W. Composites of boron-doped carbon nanosheets and iron oxide nanoneedles: Fabrication and lithium ion storage performance. J. Mater. Chem. A 2014, 2, 9111-9117.

10

Ban, C. M.; Wu, Z. C.; Gillaspie, D. T.; Chen, L.; Yan, Y. F.; Blackburn, J. L.; Dillon, A. C. Nanostructured Fe3O4/SWNT electrode: Binder-free and high-rate Li-ion anode. Adv. Mater. 2010, 22, E145-E149.

11

Jia, X. L.; Cheng, Y. H.; Lu, Y. F.; Wei, F. Building robust carbon nanotube-interweaved-nanocrystal architecture for high-performance anode materials. ACS Nano 2014, 8, 9265-9273.

12

Chen, S. Q.; Bao, P. T.; Wang, G. X. Synthesis of Fe2O3-CNT-graphene hybrid materials with an open three-dimensional nanostructure for high capacity lithium storage. Nano Energy 2013, 2, 425-434.

13

Chen, M. H.; Liu, J. L.; Chao, D. L.; Wang, J.; Yin, J. H.; Lin, J. Y.; Fan, H. J.; Shen, Z. X. Porous α-Fe2O3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries. Nano Energy 2014, 9, 364-372.

14

Sun, Z. Y.; Xie, K. P.; Li, Z. A.; Sinev, I.; Ebbinghaus, P.; Erbe, A.; Farle, M.; Schuhmann, W.; Muhler, M.; Ventosa, E. Hollow and yolk-shell iron oxide nanostructures on few-layer graphene in Li-ion batteries. Chem. —Eur. J. 2014, 20, 2022-2030.

15

Hu, J. T.; Zheng, J. X.; Tian, L. L.; Duan, Y. D.; Lin, L. P.; Cui, S. H.; Peng, H.; Liu, T. C.; Guo, H.; Wang, X. W. et al. A core-shell nanohollow-γ-Fe2O3@graphene hybrid prepared through the kirkendall process as a high performance anode material for lithium ion batteries. Chem. Commun. 2015, 51, 7855-7858.

16

An, Q. Y.; Lv, F.; Liu, Q. Q.; Han, C. H.; Zhao, K. N.; Sheng, J. Z.; Wei, Q. L.; Yan, M. Y.; Mai, L. Q. Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett. 2014, 14, 6250-6256.

17

Luo, J. S.; Liu, J. L.; Zeng, Z. Y.; Ng, C. F.; Ma, L. J.; Zhang, H.; Lin, J. Y.; Shen, Z. X.; Fan, H. J. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 2013, 13, 6136-6143.

18

Wei, W.; Yang, S. B.; Zhou, H. X.; Lieberwirth, I.; Feng, X. L.; Müllen, K. 3d graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv. Mater. 2013, 25, 2909-2914.

19

Yu, S. H.; Conte, D. E.; Baek, S.; Lee, D. C.; Park, S. K.; Lee, K. J.; Piao, Y. Z.; Sung, Y. E.; Pinna, N. Structure-properties relationship in iron oxide-reduced graphene oxide nanostructures for Li-ion batteries. Adv. Funct. Mater. 2013, 23, 4293-4305.

20

Wang, H. W.; Xu, Z. J.; Yi, H.; Wei, H. G.; Guo, Z. H.; Wang, X. F. One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors. Nano Energy 2014, 7, 86-96.

21

Zhao, B. T.; Zheng, Y.; Ye, F.; Deng, X.; Xu, X. M.; Liu, M. L.; Shao, Z. P. Multifunctional iron oxide nanoflake/graphene composites derived from mechanochemical synthesis for enhanced lithium storage and electrocatalysis. ACS Appl. Mater. Interfaces 2015, 7, 14446-14455.

22

Lee, K. S.; Park, S.; Lee, W.; Yoon, Y. S. Hollow nanobarrels of α-Fe2O3 on reduced graphene oxide as high-performance anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 2027-2034.

23

Pan, L.; Zhu, X. D.; Xie, X. M.; Liu, Y. T. Smart hybridization of TiO2 nanorods and Fe3O4 nanoparticles with pristine graphene nanosheets: Hierarchically nanoengineered ternary heterostructures for high-rate lithium storage. Adv. Funct. Mater. 2015, 25, 3341-3350.

24

Li, Q.; Mahmood, N.; Zhu, J. H.; Hou, Y. L.; Sun, S. H. Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today 2014, 9, 668-683.

25

Wang, Z. Y.; Liu, C. J. Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: Current status and perspective. Nano Energy 2015, 11, 277-293.

26

Wu, S. P.; Xu, R.; Lu, M. J.; Ge, R. Y.; Iocozzia, J.; Han, C. P.; Jiang, B. B.; Lin, Z. Q. Graphene-containing nanomaterials for lithium-ion batteries. Adv. Energy Mater. 2015, 5, 1500400.

27

Fei, H. L.; Peng, Z. W.; Li, L.; Yang, Y.; Lu, W.; Samuel, E. L. G.; Fan, X. J.; Tour, J. M. Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries. Nano Res. 2014, 7, 502-510.

28

Li, L.; Gao, C. T.; Kovalchuk, A.; Peng, Z. W.; Ruan, G. D.; Yang, Y.; Fei, H. L.; Zhong, Q. F.; Li, Y. L.; Tour, J. M. Sandwich structured graphene-wrapped FeS-graphene nanoribbons with improved cycling stability for lithium ion batteries. Nano Res. 2016, 9, 2904-2911.

29

Wang, D. H.; Kou, R.; Choi, D.; Yang, Z. G.; Nie, Z. M.; Li, J.; Saraf, L. V.; Hu, D. H.; Zhang, J. G.; Graff, G. L. et al. Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano 2010, 4, 1587-1595.

30

Li, X. L.; Qi, W.; Mei, D. H.; Sushko, M. L.; Aksay, I.; Liu, J. Functionalized graphene sheets as molecular templates for controlled nucleation and self-assembly of metal oxide-graphene nanocomposites. Adv. Mater. 2012, 24, 5136-5141.

31

Wood, K. N.; O'Hayre, R.; Pylypenko, S. Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 2014, 7, 1212-1249.

32

Liu, S. H.; Dong, Y. F.; Zhao, C. T.; Zhao, Z. B.; Yu, C.; Wang, Z. Y.; Qiu, J. S. Nitrogen-rich carbon coupled multifunctional metal oxide/graphene nanohybrids for long-life lithium storage and efficient oxygen reduction. Nano Energy 2015, 12, 578-587.

33

Wang, X. W.; Sun, G. Z.; Routh, P.; Kim, D. H.; Huang, W.; Chen, P. Heteroatom-doped graphene materials: Syntheses, properties and applications. Chem. Soc. Rev. 2014, 43, 7067-7098.

34

Wang, X.; Cao, X. Q.; Bourgeois, L.; Guan, H.; Chen, S. M.; Zhong, Y. T.; Tang, D. M.; Li, H. Q.; Zhai, T. Y.; Li, L. et al. N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries. Adv. Funct. Mater. 2012, 22, 2682-2690.

35

Song, J. X.; Xu, T.; Gordin, M. L.; Zhu, P. Y.; Lv, D. P.; Jiang, Y. B.; Chen, Y. S.; Duan, Y. H.; Wang, D. H. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 1243-1250.

36

Li, X. L.; Wang, H. L.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. J. Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 2009, 131, 15939-15944.

37

Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321-1326.

38

Marsden, A. J.; Brommer, P.; Mudd, J. J.; Dyson, M. A.; Cook, R.; Asensio, M.; Avila, J.; Levy, A.; Sloan, J.; Quigley, D. et al. Effect of oxygen and nitrogen functionalization on the physical and electronic structure of graphene. Nano Res. 2015, 8, 2620-2635.

39

Wu, Z. S.; Ren, W. C.; Xu, L.; Li, F.; Cheng, H. M. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 2011, 5, 5463-5471.

40

He, C. Y.; Wang, R. H.; Fu, H. G.; Shen, P. K. Nitrogen-self-doped graphene as a high capacity anode material for lithium-ion batteries. J. Mater. Chem. 2013, 1, 14586-14591.

41

Chang, Y. H.; Li, J.; Wang, B.; Luo, H.; He, H. Y.; Song, Q.; Zhi, L. J. Synthesis of 3d nitrogen-doped graphene/Fe3O4 by a metal ion induced self-assembly process for high-performance li-ion batteries. J. Mater. Chem. 2013, 1, 14658-14665.

42

Yang, L.; Guo, G. N.; Sun, H. J.; Shen, X. D.; Hu, J. H.; Dong, A. G.; Yang, D. Ionic liquid as the C and N sources to prepare yolk-shell Fe3O4@N-doped carbon nanoparticles and its high performance in lithium-ion battery. Electrochim. Acta 2016, 190, 797-803.

43

Zhou, X. S.; Wan, L. J.; Guo, Y. G. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 2013, 25, 2152-2157.

44

Qiu, Y. C.; Li, W. F.; Zhao, W.; Li, G. Z.; Hou, Y.; Liu, M. N.; Zhou, L. S.; Ye, F. M.; Li, H. F.; Wei, Z. H. et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 2014, 14, 4821-4827.

45

Yun, S.; Lee, Y. C.; Park, H. S. Phase-controlled iron oxide nanobox deposited on hierarchically structured graphene networks for lithium ion storage and photocatalysis. Sci. Rep. 2016, 6, 19959.

46

Yu, X. B.; Qu, B.; Zhao, Y.; Li, C. Y.; Chen, Y. J.; Sun, C. W.; Gao, P.; Zhu, C. L. Growth of hollow transition metal (Fe, Co, Ni) oxide nanoparticles on graphene sheets through kirkendall effect as anodes for high-performance lithium-ion batteries. Chem. —Eur. J. 2016, 22, 1638-1645.

47

Zhang, Z. H.; Wang, F.; An, Q.; Li, W.; Wu, P. Y. Synthesis of graphene@ Fe3O4@C core-shell nanosheets for high-performance lithium ion batteries. J. Mater. Chem. 2015, 3, 7036-7043.

48

Zhang, L.; Wu, H. B.; Lou, X. W. Iron-oxide-based advanced anode materials for lithium-ion batteries. Adv. Energy Mater. 2014, 4, 1300958.

49

Han, F.; Ma, L. J.; Sun, Q.; Lei, C.; Lu, A. H. Rationally designed carbon-coated Fe3O4 coaxial nanotubes with hierarchical porosity as high-rate anodes for lithium ion batteries. Nano Res. 2014, 7, 1706-1717.

50

Liu, Y. P.; Huang, K.; Luo, H.; Li, H. X.; Qi, X.; Zhong, J. X. Nitrogen-doped graphene-Fe3O4 architecture as anode material for improved Li-ion storage. RSC Adv. 2014, 4, 17653-17659.

51

Qin, G. H.; Fang, Z. W.; Wang, C. Y. Template free construction of a hollow Fe3O4 architecture embedded in an N-doped graphene matrix for lithium storage. Dalton Trans. 2015, 44, 5735-5745.

52

Lu, X. Y.; Wang, R. H.; Bai, Y.; Chen, J. J.; Sun, J. Facile preparation of a three-dimensional Fe3O4/macroporous graphene composite for high-performance li storage. J. Mater. Chem. 2015, 3, 12031-12037.

53

Sakthivel, T.; Gunasekaran, V.; Kim, S. J. Effect of oxygenated functional groups on the photoluminescence properties of graphene-oxide nanosheets. Mater. Sci. Semicond. Process. 2014, 19, 174-178.

54

Tang, L. H.; Wang, Y.; Li, Y. M.; Feng, H. B.; Lu, J.; Li, J. H. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 2009, 19, 2782-2789.

55

Sun, L.; Wang, L.; Tian, C. G.; Tan, T. X.; Xie, Y.; Shi, K. Y.; Li, M. T.; Fu, H. G. Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Adv. 2012, 2, 4498-4506.

56

Chen, P.; Xiao, T. Y.; Qian, Y. H.; Li, S. S.; Yu, S. H. A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity. Adv. Mater. 2013, 25, 3192-3196.

57

Li, L.; Kovalchuk, A.; Fei, H. L.; Peng, Z. W.; Li, Y. L.; Kim, N. D.; Xiang, C. S.; Yang, Y.; Ruan, G. D.; Tour, J. M. Enhanced cycling stability of lithium-ion batteries using graphene-wrapped Fe3O4-graphene nanoribbons as anode materials. Adv. Energy Mater. 2015, 5, 1500171.

58

Jiang, X.; Yang, X. L.; Zhu, Y. H.; Yao, Y. F.; Zhao, P.; Li, C. Z. Graphene/carbon-coated Fe3O4 nanoparticle hybrids for enhanced lithium storage. J. Mater. Chem. 2015, 3, 2361-2369.

59

Yang, S. B.; Sun, Y.; Chen, L.; Hernandez, Y.; Feng, X. L.; Müllen, K. Porous iron oxide ribbons grown on graphene for high-performance lithium storage. Sci. Rep. 2012, 2, 427.

60

Zhou, G. M.; Wang, D. W.; Li, F.; Zhang, L. L.; Li, N.; Wu, Z. S.; Wen, L.; Lu, G. Q.; Cheng, H. M. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 2010, 22, 5306-5313.

61

McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396-4404.

62

Su, J.; Cao, M. H.; Ren, L.; Hu, C. W. Fe3O4-graphene nanocomposites with improved lithium storage and magnetism properties. J. Phys. Chem. C 2011, 115, 14469-14477.

63

Segall, M. D.; Philip, J. D. L.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. : Condens. Matter 2002, 14, 2717-2744.

64

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

65

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

Nano Research
Pages 2923-2933
Cite this article:
Qi W, Li X, Li H, et al. Sandwich-structured nanocomposites of N-doped graphene and nearly monodisperse Fe3O4 nanoparticles as high-performance Li-ion battery anodes. Nano Research, 2017, 10(9): 2923-2933. https://doi.org/10.1007/s12274-017-1502-x

690

Views

31

Crossref

N/A

Web of Science

35

Scopus

4

CSCD

Altmetrics

Received: 11 October 2016
Revised: 12 January 2017
Accepted: 31 January 2017
Published: 26 May 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return