AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

MoS2-graphene in-plane contact for high interfacial thermal conduction

Xiangjun Liu§Junfeng Gao§Gang Zhang( )Yong-Wei Zhang
Institute of High Performance ComputingA*STARSingapore138632Singapore

§ Xiangjun Liu and Junfeng Gao contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Recent studies have indicated that two-dimensional (2D) MoS2 exhibits low in-plane and inter-plane thermal conductivities. This poses a significant challenge to heat management in MoS2-based electronic devices. To address this challenge, we have designed MoS2-graphene interfaces that fully utilize graphene, a 2D material that exhibits very high thermal conductivity. First, we performed ab initio atomistic simulations to understand bonding and structural stability at the interfaces. The interfaces that we designed, which were connected via strong covalent bonds between Mo and C atoms, were energetically stable. We then performed molecular dynamics simulations to investigate interfacial thermal conductance in these materials. Surprisingly, the interfacial thermal conductance was high and comparable to those of covalently bonded graphene-metal interfaces. Importantly, each interfacial Mo–C bond served as an independent thermal channel, enabling modulation of the interfacial thermal conductance by controlling the Mo vacancy concentration at the interface. The present work provides a viable heat management strategy for MoS2-based electronic devices.

References

1

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419-425.

2

Zhao, J. J.; Liu, H. S.; Yu, Z. M.; Quhe, R.; Zhou, S.; Wang, Y. Y.; Liu, C. C.; Zhong, H. X.; Han, N. N.; Lu, J. et al. Rise of silicene: A competitive 2D material. Prog. Mater. Sci. 2016, 83, 24-151.

3

Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195-1205.

4

Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. -J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656-660.

5

Yu, Z. H.; Pan, Y. M.; Shen, Y. T.; Wang, Z. L.; Ong, Z. -Y.; Xu, T.; Xin, R.; Pan, L. J.; Wang, B. G.; Sun, L. T. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 2014, 5, 5290.

6

Cui, X.; Lee, G. -H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C. -H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 2015, 10, 534-540.

7

Liu, Y.; Wu, H.; Cheng, H. -C.; Yang, S.; Zhu, E. B.; He, Q. Y.; Ding, M. N.; Li, D. H.; Guo, J.; Weiss, N. O. et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 2015, 15, 3030-3034.

8

Yu, Z. H.; Ong, Z. -Y.; Pan, Y. M.; Cui, Y.; Xin, R.; Shi, Y.; Wang, B. G.; Wu, Y.; Chen, T. S.; Zhang, Y. -W. et al. Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 2016, 28, 547-552.

9

Sahoo, S.; Gaur, A. P. S.; Ahmadi, M.; Guinel, M. J. F.; Katiyar, R. S. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 2013, 117, 9042-9047.

10

Yan, R. S.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X. F.; Kis, A.; Luo, T. F.; Walker, A. R. H.; Xiang, H. G. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 2014, 8, 986-993.

11

Taube, A.; Judek, J.; Łapińska, A.; Zdrojek, M. Temperature-dependent thermal properties of supported MoS2 monolayers. ACS Appl. Mater. Interfaces 2015, 7, 5061-5065.

12

Liu, X. J.; Zhang, G.; Pei, Q. -X.; Zhang, Y. -W. Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons. Appl. Phys. Lett. 2013, 103, 133113.

13

Li, W.; Carrete, J.; Mingo, N. Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles. Appl. Phys. Lett. 2013, 103, 253103.

14

Wei, X. L.; Wang, Y. C.; Shen, Y. L.; Xie, G. F.; Xiao, H. P.; Zhong, J. X.; Zhang, G. Phonon thermal conductivity of monolayer MoS2: A comparison with single layer graphene. Appl. Phys. Lett. 2014, 105, 103902.

15

Jiang, J. -W.; Zhuang, X. Y.; Rabczuk, T. Orientation dependent thermal conductance in single-layer MoS2. Sci. Rep. 2013, 3, 2209.

16

Wu, X. F.; Yang, N.; Luo, T. F. Unusual isotope effect on thermal transport of single layer molybdenum disulphide. Appl. Phys. Lett. 2015, 107, 191907.

17

Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902-907.

18

Ghosh, S.; Bao, W. Z.; Nika, D. L.; Subrina, S.; Pokatilov, E. P.; Lau, C. N.; Balandin, A. A. Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 2010, 9, 555-558.

19

Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X. S.; Yao, Z.; Huang, R.; Broido, D. et al. Two-dimensional phonon transport in supported graphene. Science 2010, 328, 213-216.

20

Sadeghi, M. M.; Jo, I.; Shi, L. Phonon-interface scattering in multilayer graphene on an amorphous support. Proc. Natl. Acad. Sci. USA 2013, 110, 16321-16326.

21

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

22

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15-50.

23

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

24

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.

25

Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1-19.

26

Stuart, S. J.; Tutein, A. B.; Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472-6486.

27

Liang, T.; Phillpot, S. R.; Sinnott, S. B. Parametrization of a reactive many-body potential for Mo-S systems. Phys. Rev. B 2009, 79, 245110.

28

Stewart, J. A.; Spearot, D. E. Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS2). Modelling Simul. Mater. Sci. Eng. 2013, 21, 045003.

29

Liu, X. J.; Zhang, G.; Zhang, Y. -W. Tunable mechanical and thermal properties of one-dimensional carbyne chain: Phase transition and microscopic dynamics. J. Phys. Chem. C 2015, 119, 24156-24164.

30

Tang, D. -M.; Kvashnin, D. G.; Najmaei, S.; Bando, Y.; Kimoto, K.; Koskinen, P.; Ajayan, P. M.; Yakobson, B. I.; Sorokin, P. B.; Lou, J. et al. Nanomechanical cleavage of molybdenum disulphide atomic layers. Nat. Commun. 2014, 5, 3631.

31

Dang, K. Q.; Spearot, D. E. Effect of point and grain boundary defects on the mechanical behavior of monolayer MoS2 under tension via atomistic simulations. J. Appl. Phys. 2014, 116, 013508.

32

Wang, X. N.; Tabarraei, A.; Spearot, D. E. Fracture mechanics of monolayer molybdenum disulfide. Nanotechnology 2015, 26, 175703.

33

Liu, X. J.; Zhang, G.; Zhang, Y. -W. Graphene-based thermal modulators. Nano Res. 2015, 8, 2755-2762.

34

Ding, Z. W.; Pei, Q. -X.; Jiang, J. -W.; Huang, W. X.; Zhang, Y. -W. Interfacial thermal conductance in graphene/MoS2 heterostructures. Carbon 2016, 96, 888-896.

35

Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A., Ⅲ; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024-10035.

36

Volz, S. G.; Chen, G. Molecular dynamics simulation of thermal conductivity of silicon nanowires. Appl. Phys. Lett. 1999, 75, 2056-2058.

37

Gao, Y. B.; Zhang, Y. F.; Chen, P. C.; Li, Y. C.; Liu, M. X.; Gao, T.; Ma, D. L.; Chen, Y. B.; Cheng, Z. H.; Qiu, X. H. et al. Toward single-layer uniform hexagonal boron nitride-graphene patchworks with zigzag linking edges. Nano Lett. 2013, 13, 3439-3443.

38

Liu, M. X.; Li, Y. C.; Chen, P. C.; Sun, J. Y.; Ma, D. L.; Li, Q. C.; Gao, T.; Gao, Y. B.; Cheng, Z. H.; Qiu, X. H. et al. Quasi-freestanding monolayer heterostructure of graphene and hexagonal boron nitride on Ir(111) with a zigzag boundary. Nano Lett. 2014, 14, 6342-6347.

39

Li, Y. F.; Zhou, Z.; Zhang, S. B.; Chen, Z. F. MoS2 nanoribbons: High stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 2008, 130, 16739-16744.

40

Wang, Z. Y.; Li, H.; Liu, Z.; Shi, Z. J.; Lu, J.; Suenaga, K.; Joung, S. -K.; Okazaki, T.; Gu, Z. N.; Zhou, J. et al. Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes. J. Am. Chem. Soc. 2010, 132, 13840-13847.

41

Girit, Ҫ. Ö.; Meyer, J. C.; Erni, R.; Rossell, M. D.; Kisielowski, C.; Yang, L.; Park, C. -H.; Crommie, M. F.; Cohen, M. L.; Louie, S. G. et al. Graphene at the edge: Stability and dynamics. Science 2009, 323, 1705-1708.

42

Gao, J. F.; Zhao, J. J.; Ding, F. Transition metal surface passivation induced graphene edge reconstruction. J. Am. Chem. Soc. 2012, 134, 6204-6209.

43

Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511-519.

44

Mao, R.; Kong, B. D.; Gong, C.; Xu, S.; Jayasekera, T.; Cho, K.; Kim, K. W. First-principles calculation of thermal transport in metal/graphene systems. Phys. Rev. B 2013, 87, 165410.

45

Schelling, P. K.; Phillpot, S. R.; Keblinski, P. Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation. Appl. Phys. Lett. 2002, 80, 2484-2486.

46

Xu, W.; Zhang, G.; Li, B. W. Interfacial thermal resistance and thermal rectification between suspended and encased single layer graphene. J. Appl. Phys. 2014, 116, 134303.

47

Cai, Y. Q.; Lan, J. H.; Zhang, G.; Zhang, Y. -W. Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 2014, 89, 035438.

48

Drost, R.; Kezilebieke, S.; Ervasti, M. M.; Hämäläinen, S. K.; Schulz, F.; Harju, A.; Liljeroth, P. Synthesis of extended atomically perfect zigzag graphene-boron nitride interfaces. Sci. Rep. 2015, 5, 16741.

49

Feng, L. P.; Su, J.; Liu, Z. -T. Effect of vacancies in monolayer MoS2 on electronic properties of Mo-MoS2 contacts. RSC Adv. 2015, 5, 20538-20544.

50

Xie, G. F.; Shen, Y. L.; Wei, X. L.; Yang, L. W.; Xiao, H. P.; Zhong, J. X.; Zhang, G. A bond-order theory on the phonon scattering by vacancies in two-dimensional materials. Sci. Rep. 2014, 4, 5085.

51

Hu, L.; Desai, T.; Keblinski, P. Determination of interfacial thermal resistance at the nanoscale. Phys. Rev. B 2011, 83, 195423.

52

Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024-1030.

53

Bagri, A.; Kim, S. P.; Ruoff, R. S.; Shenoy, V. B. Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Lett. 2011, 11, 3917-3921.

54

Chen, J.; Zhang, G.; Li, B. W. Thermal contact resistance across nanoscale silicon dioxide and silicon interface. J. Appl. Phys. 2012, 112, 064319.

55

Jones, R. E.; Duda, J. C.; Zhou, X. W.; Kimmer, C. J.; Hopkins, P. E. Investigation of size and electronic effects on Kapitza conductance with non-equilibrium molecular dynamics. Appl. Phys. Lett. 2013, 102, 183119.

56

Liu, X. J.; Zhang, G.; Zhang, Y. -W. Thermal conduction across the one-dimensional interface between a MoS2 monolayer and metal electrode. Nano Res. 2016, 9, 2372-2383.

57

Xu, Y.; Chen, X. B.; Gu, B. -L.; Duan, W. -H. Intrinsic anisotropy of thermal conductance in graphene nanoribbons. Appl. Phys. Lett. 2009, 95, 233116.

58

Nika, D. L.; Askerov, A. S.; Balandin, A. A. Anomalous size dependence of the thermal conductivity of graphene ribbons. Nano Lett. 2012, 12, 3238-3244.

59

Yu, C. X.; Zhang, G. Impacts of length and geometry deformation on thermal conductivity of graphene nanoribbons. J. Appl. Phys. 2013, 113, 044306.

Nano Research
Pages 2944-2953
Cite this article:
Liu X, Gao J, Zhang G, et al. MoS2-graphene in-plane contact for high interfacial thermal conduction. Nano Research, 2017, 10(9): 2944-2953. https://doi.org/10.1007/s12274-017-1504-8

682

Views

61

Crossref

N/A

Web of Science

61

Scopus

0

CSCD

Altmetrics

Received: 13 October 2016
Revised: 18 January 2017
Accepted: 31 January 2017
Published: 27 March 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return