AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Scanning electron microscopy imaging of single-walled carbon nanotubes on substrates

Dongqi Li1Jin Zhang1Yujun He2,3Yan Qin4Yang Wei1( )Peng Liu1Lina Zhang1Jiaping Wang1,5Qunqing Li1,5Shoushan Fan1,5Kaili Jiang1,5( )
State Key Laboratory of Low-Dimensional Quantum PhysicsDepartment of Physics and Tsinghua-Foxconn Nanotechnology Research CenterTsinghua UniversityBeijing100084China
Sunwoda Electronic Co. Ltd.Shenzhen518108China
Graduate School at ShenzhenTsinghua UniversityShenzhen518055China
Carl Zeiss Shanghai Co., Ltd.Beijing Office, No. 1221, North Area,Building B, 768 Creative Industry ParkA-5 Xueyuan Rd., Haidian Dist.Beijing100083China
Collaborative Innovation Center of Quantum MatterBeijing100084China
Show Author Information

Graphical Abstract

Abstract

Scanning electron microscopy (SEM) plays an indispensable role in nanoscience and nanotechnology because of its high efficiency and high spatial resolution in characterizing nanomaterials. Recent progress indicates that the contrast arising from different conductivities or bandgaps can be observed in SEM images if single-walled carbon nanotubes (SWCNTs) are placed on a substrate. In this study, we use SWCNTs on different substrates as model systems to perform SEM imaging of nanomaterials. Substantial SEM observations are conducted at both high and low acceleration voltages, leading to a comprehensive understanding of the effects of the imaging parameters and substrates on the material and surface-charge signals, as well as the SEM imaging. This unified picture of SEM imaging not only furthers our understanding of SEM images of SWCNTs on a variety of substrates but also provides a basis for developing new imaging recipes for other important nanomaterials used in nanoelectronics and nanophotonics.

References

1
Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.https://doi.org/10.1142/p080
2

Li, J.; He, Y. J.; Han, Y. M.; Liu, K.; Wang, J. P.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy. Nano Lett. 2012, 12, 4095–4101.

3

He, Y. J.; Zhang, J.; Li, D. Q.; Wang, J. T.; Wu, Q.; Wei, Y.; Zhang, L.; Wang, J. P.; Liu, P.; Li, Q. Q. et al. Evaluating bandgap distributions of carbon nanotubes via scanning electron microscopy imaging of the schottky barriers. Nano Lett. 2013, 13, 5556–5562.

4
Wells, O. C. Scanning Electron Microscopy; McGraw Hill: New York, 1974; pp 1–6.
5

Shimizu, R. Secondary electron yield with primary electron beam of kilo-electron-volts. J. Appl. Phys. 1974, 45, 2107–2111.

6

Seiler, H. Secondary electron emission in the scanning electron microscope. J. Appl. Phys. 1983, 54, R1–R18.

7

Cazaux, J. Some considerations on the electric field induced in insulators by electron bombardment. J. Appl. Phys. 1986, 59, 1418–1430.

8

Kocabas, C.; Hur, S. H.; Gaur, A.; Meitl, M. A.; Shim, M.; Rogers, J. A. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 2005, 1, 1110–1116.

9

Jiao, L. Y.; Fan, B.; Xian, X. J.; Wu, Z. Y.; Zhang, J.; Liu, Z. F. Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing. J. Am. Chem. Soc. 2008, 130, 12612–12613.

10

He, Y. J.; Li, D. Q.; Li, T. Y.; Lin, X. Y.; Zhang, J.; Wei, Y.; Liu, P.; Zhang, L. N.; Wang, J. P.; Li, Q. Q. et al. Metalfilm-assisted ultra-clean transfer of single-walled carbon nanotubes. Nano Res. 2014, 7, 981–989.

11

Michaelson, H. B. The work function of the elements and its periodicity. J. Appl. Phys. 1977, 48, 4729–4733.

12
Li, D. Q.; Wei, Y.; Zhang, J.; Wang, J. T.; Lin, Y. H.; Liu, P.; Fan, S. S.; Jiang, K. L. Direct discrimination between semiconducting and metallic single-walled carbon nanotubes with high spatial resolution by SEM. Nano Res., in press, DOI: 10.1007/s12274-016-1372-7.https://doi.org/10.1007/s12274-016-1372-7
13

Yao, Z.; Postma, H. W. C.; Balents, L.; Dekker, C. Carbon nanotube intramolecular junctions. Nature 1999, 402, 273–276.

14

Fuhrer, M. S.; Nyg?rd, J.; Shih, L.; Forero, M.; Yoon, Y. G.; Mazzoni, M. S. C.; Choi, H. J.; Ihm, J.; Louie, S. G.; Zettl, A. et al. Crossed nanotube junctions. Science 2000, 288, 494–497.

15

Park, J. W.; Kim, J.; Yoo, K. H. Electrical transport through crossed carbon nanotube junctions. J. Appl. Phys. 2003, 93, 4191–4193.

16

Nojeh, A.; Lakatos, G. W.; Peng, S.; Cho, K.; Pease, R. F. W. A carbon nanotube cross structure as a nanoscale quantum device. Nano Lett. 2003, 3, 1187–1190.

17

Liu, W.; Hierold, C.; Haluska, M. Electrical contacts to individual SWCNTs: A review. Beilstein J. Nanotechnol. 2014, 5, 2202–2215.

18

Dissanayake, D. M. N. M.; Zhong, Z. H. Schottky diodes using as-grown single-walled carbon nanotube ensembles. Appl. Phys. Lett. 2014, 104, 123501.

Nano Research
Pages 1804-1818
Cite this article:
Li D, Zhang J, He Y, et al. Scanning electron microscopy imaging of single-walled carbon nanotubes on substrates. Nano Research, 2017, 10(5): 1804-1818. https://doi.org/10.1007/s12274-017-1505-7
Part of a topical collection:

752

Views

13

Crossref

N/A

Web of Science

14

Scopus

1

CSCD

Altmetrics

Received: 14 November 2016
Accepted: 31 January 2017
Published: 10 March 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return