Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Scanning electron microscopy (SEM) plays an indispensable role in nanoscience and nanotechnology because of its high efficiency and high spatial resolution in characterizing nanomaterials. Recent progress indicates that the contrast arising from different conductivities or bandgaps can be observed in SEM images if single-walled carbon nanotubes (SWCNTs) are placed on a substrate. In this study, we use SWCNTs on different substrates as model systems to perform SEM imaging of nanomaterials. Substantial SEM observations are conducted at both high and low acceleration voltages, leading to a comprehensive understanding of the effects of the imaging parameters and substrates on the material and surface-charge signals, as well as the SEM imaging. This unified picture of SEM imaging not only furthers our understanding of SEM images of SWCNTs on a variety of substrates but also provides a basis for developing new imaging recipes for other important nanomaterials used in nanoelectronics and nanophotonics.
Li, J.; He, Y. J.; Han, Y. M.; Liu, K.; Wang, J. P.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy. Nano Lett. 2012, 12, 4095–4101.
He, Y. J.; Zhang, J.; Li, D. Q.; Wang, J. T.; Wu, Q.; Wei, Y.; Zhang, L.; Wang, J. P.; Liu, P.; Li, Q. Q. et al. Evaluating bandgap distributions of carbon nanotubes via scanning electron microscopy imaging of the schottky barriers. Nano Lett. 2013, 13, 5556–5562.
Shimizu, R. Secondary electron yield with primary electron beam of kilo-electron-volts. J. Appl. Phys. 1974, 45, 2107–2111.
Seiler, H. Secondary electron emission in the scanning electron microscope. J. Appl. Phys. 1983, 54, R1–R18.
Cazaux, J. Some considerations on the electric field induced in insulators by electron bombardment. J. Appl. Phys. 1986, 59, 1418–1430.
Kocabas, C.; Hur, S. H.; Gaur, A.; Meitl, M. A.; Shim, M.; Rogers, J. A. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 2005, 1, 1110–1116.
Jiao, L. Y.; Fan, B.; Xian, X. J.; Wu, Z. Y.; Zhang, J.; Liu, Z. F. Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing. J. Am. Chem. Soc. 2008, 130, 12612–12613.
He, Y. J.; Li, D. Q.; Li, T. Y.; Lin, X. Y.; Zhang, J.; Wei, Y.; Liu, P.; Zhang, L. N.; Wang, J. P.; Li, Q. Q. et al. Metalfilm-assisted ultra-clean transfer of single-walled carbon nanotubes. Nano Res. 2014, 7, 981–989.
Michaelson, H. B. The work function of the elements and its periodicity. J. Appl. Phys. 1977, 48, 4729–4733.
Yao, Z.; Postma, H. W. C.; Balents, L.; Dekker, C. Carbon nanotube intramolecular junctions. Nature 1999, 402, 273–276.
Fuhrer, M. S.; Nyg?rd, J.; Shih, L.; Forero, M.; Yoon, Y. G.; Mazzoni, M. S. C.; Choi, H. J.; Ihm, J.; Louie, S. G.; Zettl, A. et al. Crossed nanotube junctions. Science 2000, 288, 494–497.
Park, J. W.; Kim, J.; Yoo, K. H. Electrical transport through crossed carbon nanotube junctions. J. Appl. Phys. 2003, 93, 4191–4193.
Nojeh, A.; Lakatos, G. W.; Peng, S.; Cho, K.; Pease, R. F. W. A carbon nanotube cross structure as a nanoscale quantum device. Nano Lett. 2003, 3, 1187–1190.
Liu, W.; Hierold, C.; Haluska, M. Electrical contacts to individual SWCNTs: A review. Beilstein J. Nanotechnol. 2014, 5, 2202–2215.
Dissanayake, D. M. N. M.; Zhong, Z. H. Schottky diodes using as-grown single-walled carbon nanotube ensembles. Appl. Phys. Lett. 2014, 104, 123501.