AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Determination of the acidic properties of carboxylated carbocatalysts in an acid-catalyzed ring-opening reaction using kinetic profiling

Bolun Wang1,2Guodong Wen1Dangsheng Su1,3( )
Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
School of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
Department of Inorganic ChemistryFritz Haber Institute of the Max Planck SocietyBerlin14195Germany
Show Author Information

Graphical Abstract

Abstract

The acid-catalyzed ring-opening reaction of styrene oxide was used as a probe reaction for evaluating the acidic properties of carboxylated carbocatalysts. Significant discrepancies in the initial reaction rates were normalized using the total number of carboxyl groups, and demonstrated that the average catalytic activities of the carboxyl moieties on the carbocatalysts differed. Comparisons between the apparent activation energy Ea and the pre-exponential factor A, derived from Arrhenius analysis, demonstrated that A varied more significantly, and therefore had a more significant effect on the reaction rates than Ea. The variation in the calculated pKa values of the carboxyl groups was attributed to the electronic effects of the nitro groups. This hypothesis was supported by the temperature programmed desorption profiles of nitrogen monoxide ions.

Electronic Supplementary Material

Download File(s)
nr-10-9-2954_ESM.pdf (5.3 MB)

References

1

Dreyer, D. R.; Bielawski, C. W. Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chem. Sci. 2011, 2, 1233-1240.

2

Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Carbocatalysis by graphene-based materials. Chem. Rev. 2014, 114, 6179-6212.

3

Cao, Y. H.; Yu, H.; Peng, F.; Wang, H. J. Selective allylic oxidation of cyclohexene catalyzed by nitrogen-doped carbon nanotubes. ACS Catal. 2014, 4, 1617-1625.

4

Li, W. J.; Gao, Y. J.; Chen, W. L.; Tang, P.; Li, W. Z.; Shi, Z. J.; Su, D. S.; Wang, J. G.; Ma, D. Catalytic epoxidation reaction over N-containing sp2 carbon catalysts. ACS Catal. 2014, 4, 1261-1266.

5

Su, D. S.; Zhang, J.; Frank, B.; Thomas, A.; Wang, X. C.; Paraknowitsch, J.; Schlögl, R. Metal-free heterogeneous catalysis for sustainable chemistry. ChemSusChem 2010, 3, 169-180.

6

Su, D. S.; Centi, G. A perspective on carbon materials for future energy application. J. Energy Chem. 2013, 22, 151-173.

7

Su, D. S.; Perathoner, S.; Centi, G. Nanocarbons for the development of advanced catalysts. Chem. Rev. 2013, 113, 5782-5816.

8

Zhu, J.; Holmen, A.; Chen, D. Carbon nanomaterials in catalysis: Proton affinity, chemical and electronic properties, and their catalytic consequences. ChemCatChem 2013, 5, 378-401.

9

Arrigo, R.; Hävecker, M.; Wrabetz, S.; Blume, R.; Lerch, M.; McGregor, J.; Parrott, E. P. J.; Zeitler, J. A.; Gladden, L. F.; Knop Gericke, A. et al. Tuning the acid/base properties of nanocarbons by functionalization via amination. J. Am. Chem. Soc. 2010, 132, 9616-9630.

10

Lin, Y. M.; Su, D. S. Fabrication of nitrogen-modified annealed nanodiamond with improved catalytic activity. ACS Nano 2014, 8, 7823-7833.

11

Xue, B.; Zhu, J. G.; Liu, N.; Li, Y. X. Facile functionalization of graphene oxide with ethylenediamine as a solid base catalyst for Knoevenagel condensation reaction. Catal. Commun. 2015, 64, 105-109.

12

Xu, T. Y.; Zhang, Q. F.; Yang, H. F.; Li, X. N.; Wang, J. G. Role of phenolic groups in the stabilization of palladium nanoparticles. Ind. Eng. Chem. Res. 2013, 52, 9783-9789.

13

Machado, B. F.; Oubenali, M.; Rosa Axet, M.; TrangNGuyen, T.; Tunckol, M.; Girleanu, M.; Ersen, O.; Gerber, I. C.; Serp, P. Understanding the surface chemistry of carbon nanotubes: Toward a rational design of Ru nanocatalysts. J. Catal. 2014, 309, 185-198.

14

Zhang, L. Y.; Wen, G. D.; Liu, H. Y.; Wang, N.; Su, D. S. Preparation of palladium catalysts supported on carbon nanotubes by an electrostatic adsorption method. ChemCatChem 2014, 6, 2600-2606.

15

Wen, G. D.; Diao, J. Y.; Wu, S. C.; Yang, W. M.; Schlögl, R.; Su, D. S. Acid properties of nanocarbons and their application in oxidative dehydrogenation. ACS Catal. 2015, 5, 3600-3608.

16

Luo, R. C.; Zhou, X. T.; Fang, Y. X.; Ji, H. B. Metal-and solvent-free synthesis of cyclic carbonates from epoxides and CO2 in the presence of graphite oxide and ionic liquid under mild conditions: A kinetic study. Carbon 2015, 82, 1-11.

17

To, A. T.; Chung, P. W.; Katz, A. Weak-acid sites catalyze the hydrolysis of crystalline cellulose to glucose in water: Importance of post-synthetic functionalization of the carbon surface. Angew. Chem., Int. Ed. 2015, 54, 11050-11053.

18

Boehm, H. P.; Diehl, E.; Heck, W.; Sappok, R. Surface oxides of carbon. Angew. Chem., Int. Ed. 1964, 3, 669-677.

19

Boehm, H. P. Surface oxides on carbon and their analysis: A critical assessment. Carbon 2002, 40, 145-149.

20

Figueiredo, J. L.; Pereira, M. F. R.; Freitas, M. M. A.; Órfão, J. J. M. Modification of the surface chemistry of activated carbons. Carbon 1999, 37, 1379-1389.

21

Wu, S. C.; Wen, G. D.; Zhong, B. W.; Zhang, B. S.; Gu, X. M.; Wang, N.; Su, D. S. Reduction of nitrobenzene catalyzed by carbon materials. Chinese J. Catal. 2014, 35, 914-921.

22

Qi, W.; Liu, W.; Zhang, B. S.; Gu, X. M.; Guo, X. L.; Su, D. S. Oxidative dehydrogenation on nanocarbon: Identification and quantification of active sites by chemical titration. Angew. Chem., Int. Ed. 2013, 52, 14224-14228.

23

Zhang, Y. X.; Chen, C. L.; Peng, L. X.; Ma, Z. S.; Zhang, Y. J.; Xia, H. H.; Yang, A. L.; Wang, L.; Su, D. S.; Zhang, J. Carboxyl groups trigger the activity of carbon nanotube catalysts for the oxygen reduction reaction and agar conversion. Nano Res. 2015, 8, 502-511.

24

Li, C.; Zhao, A. Q.; Xia, W.; Liang, C. H.; Muhler, M. Quantitative studies on the oxygen and nitrogen functionalization of carbon nanotubes performed in the gas phase. J. Phys. Chem. C 2012, 116, 20930-20936.

25

Jia, H. P.; Dreyer, D. R.; Bielawski, C. W. Graphite oxide as an auto-tandem oxidation-hydration-aldol coupling catalyst. Adv. Synth. Catal. 2011, 353, 528-532.

26

Verma, S.; Mungse, H. P.; Kumar, N.; Choudhary, S.; Jain, S. L.; Sain, B.; Khatri, O. P. Graphene oxide: An efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes. Chem. Commun. 2011, 47, 12673-12675.

27

Hu, F.; Patel, M.; Luo, F. X.; Flach, C.; Mendelsohn, R.; Garfunkel, E.; He, H. X.; Szostak, M. Graphene-catalyzed direct friedel-crafts alkylation reactions: Mechanism, selectivity, and synthetic utility. J. Am. Chem. Soc. 2015, 137, 14473-14480.

28

Chung, P. W.; Charmot, A.; Olatunji Ojo, O. A.; Durkin, K. A.; Katz, A. Hydrolysis catalysis of miscanthus xylan to xylose usingweak-acid surface sites. ACS Catal. 2014, 4, 302-310.

29

Charmot, A.; Chung, P. W.; Katz, A. Catalytic hydrolysis of cellulose to glucose using weak-acid surface sites on postsynthetically modified carbon. ACS SustainableChem. Eng. 2014, 2, 2866-2872.

30

Chung, P. W.; Charmot, A.; Gazit, O. M.; Katz, A. Glucan adsorption on mesoporous carbon nanoparticles: Effect of chain length and internal surface. Langmuir 2012, 28, 15222-15232.

31

Dhakshinamoorthy, A.; Alvaro, M.; Concepcion, P.; Fornes, V.; Garcia, H. Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides. Chem. Commun. 2012, 48, 5443-5445.

32

Qi, X. H.; Guo, H. X.; Li, L. Y.; Jr Smith, R. L. Acid-catalyzed dehydration of fructose into 5-hydroxymethylfurfural by cellulose-derived amorphous carbon. ChemSusChem 2012, 5, 2215-2220.

33

Babou, F.; Coudurier, G.; Védrine, J. C. Acidic properties of sulfated zirconia: An infrared spectroscopic study. J. Catal. 1995, 152, 341-349.

34

Thibault Starzyk, F.; Travert, A.; Saussey, J.; Lavalley, J. C. Correlation between activity and acidity on zeolites: A high temperature infrared study of adsorbed acetonitrile. Top. Catal. 1998, 6, 111-118.

35

Védrine, J. C. Acid-base characterization of heterogeneous catalysts: An up-to-date overview. Res. Chem. Intermediat. 2015, 41, 9387-9423.

36

Hammett, L. P.; Deyrup, A. J. A series of simple basic indicators. I. The acidity functions of mixtures of sulfuric and perchloric acids with water. J. Am. Chem. Soc. 1932, 54, 2721-2739.

37

Benesi, H. A. Acidity of catalyst surfaces. Ⅱ. Amine titration using Hammett indicators. J. Phys. Chem. 1957, 61, 970-973.

38

Paul, M. A.; Long, F. A. H0 and related indicator acidity function. Chem. Rev. 1957, 57, 1-45.

39

Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Metal-organic frameworks as efficient heterogeneous catalysts for the regioselective ring opening of epoxides. Chem. —Eur. J. 2010, 16, 8530-8536.

40

Su, C. L.; Acik, M.; Takai, K.; Lu, J.; Hao, S. J.; Zheng, Y.; Wu, P. P.; Bao, Q. L.; Enoki, T.; Chabal, Y. J. et al. Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nat. Commun. 2012, 3, 1298.

41

Wang, Z. W.; Shirley, M. D.; Meikle, S. T.; Whitby, R. L. D.; Mikhalovsky, S. V. The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in situ generated fulvic acids on their stability in aqueous dispersions. Carbon 2009, 47, 73-79.

42

Fogden, S.; Verdejo, R.; Cottam, B.; Shaffer, M. Purification of single walled carbon nanotubes: The problem with oxidation debris. Chem. Phys. Lett. 2008, 460, 162-167.

43

Rinaldi, A.; Frank, B.; Su, D. S.; Hamid, S. B. A.; Schlögl, R. Facile removal of amorphous carbon from carbon nanotubes by sonication. Chem. Mater. 2011, 23, 926-928.

44

Braude, E. A.; Nachod, F. C. Determination of Organic Structures by Physical Methods; Academic Press: New York, 1955.

45

Yang, L. J.; Jiang, S. J.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X. Z.; Wu, Q.; Ma, J.; Ma, Y. W.; Hu, Z. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2011, 50, 7132-7135.

46

Zhao, Y.; Yang, L. J.; Chen, S.; Wang, X. Z.; Ma, Y. W.; Wu, Q.; Jiang, Y. F.; Qian, W. J.; Hu, Z. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? J. Am. Chem. Soc. 2013, 135, 1201-1204.

47

Li, B.; Su, D. S. The nucleophilicity of the oxygen functional groups on carbon materials: A DFT analysis. Chem. —Eur. J. 2014, 20, 7890-7894.

48

Jiang, Y. F.; Yang, L. J.; Sun, T.; Zhao, J.; Lyu, Z.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Ma, J.; Hu, Z. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 2015, 5, 6707-6712.

49

Mao, S. J.; Sun, X. Y.; Li, B.; Su, D. S. Rationale of the effects from dopants on C-H bond activation for sp2 hybridized nanostructured carbon catalysts. Nanoscale 2015, 7, 16597-16600.

50

Wang, C. M.; Brogaard, R. Y.; Weckhuysen, B. M.; Nørskov, J. K.; Studt, F. Reactivity descriptor in solid acid catalysis: Predicting turnover frequencies for propene methylation in zeotypes. J. Phys. Chem. Lett. 2014, 5, 1516-1521.

51

Brogaard, R. Y.; Wang, C. M.; Studt, F. Methanol-alkene reactions in zeotype acid catalysts: Insights from a descriptor-based approach and microkinetic modeling. ACS Catal. 2014, 4, 4504-4509.

52

Bligaard, T.; Honkala, K.; Logadottir, A.; Nørskov, J. K.; Dahl, S.; Jacobsen, C. J. H. On the compensation effect in heterogeneous catalysis. J. Phys. Chem. B 2003, 107, 9325-9331.

53

Teschner, D.; Novell Leruth, G.; Farra, R.; Knop Gericke, A.; Schlögl, R.; Szentmiklósi, L.; Hevia, M. G.; Soerijanto, H.; Schomäcker, R.; Pérez Ramírez, J. et al. In situ surface coverage analysis of RuO2-catalysed HCl oxidation reveals the entropic origin of compensation in heterogeneous catalysis. Nat. Chem. 2012, 4, 739-745.

54

Kwon, S.; Schweitzer, N. M.; Park, S.; Stair, P. C.; Snurr, R. Q. A kinetic study of vapor-phase cyclohexene epoxidation by H2O2 over mesoporous TS-1. J. Catal. 2015, 326, 107-115.

55

Chen, C. L.; Zhang, J.; Zhang, B. S.; Yu, C. L.; Peng, F.; Su, D. S. Revealing the enhanced catalytic activity of nitrogen-doped carbon nanotubes for oxidative dehydrogenation of propane. Chem. Commun. 2013, 49, 8151-8153.

56

Kozuch, S.; Shaik, S. How to conceptualize catalytic cycles? The energetic span model. Acc. Chem. Res. 2011, 44, 101-110.

57

Aryafar, M.; Zaera, F. Kinetic study of the catalytic oxidation of alkanes over nickel, palladium, and platinum foils. Catal. Lett. 1997, 48, 173-183.

58

Hansen, N.; Heyden, A.; Bell, A. T.; Keil, F. J. Microkinetic modeling of nitrous oxide decomposition on dinuclear oxygen bridged iron sites in Fe-ZSM-5. J. Catal. 2007, 248, 213-225.

59

Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. J. Low-temperature oxidation of CO catalysed by Co3O4nanorods. Nature 2009, 458, 746-749.

60

Collier, V. E.; Ellebracht, N. C.; Lindy, G. I.; Moschetta, E. G.; Jones, C. W. Kinetic and mechanistic examination of acid-basebifunctionalaminosilica catalysts in aldol and nitroaldol condensations. ACS Catal. 2016, 6, 460-468.

61

Figueiredo, J. L.; Pereira, M. F. R.; Freitas, M. M. A.; Órfão, J. J. M. Characterization of active sites on carbon catalysts. Ind. Eng. Chem. Res. 2007, 46, 4110-4115.

62

Zielke, U.; Hüttinger, K. J.; Hoffman, W. P. Surface-oxidized carbon fibers: I. Surface structure and chemistry. Carbon 1996, 34, 983-998.

63

Nishimura, T.; Das, P. R.; Meisels, G. G. On the dissociation dynamics of energy-selected nitrobenzene ion. J. Chem. Phys. 1986, 84, 6190-6199.

64

Beynon, J. H.; Bertrand, M.; Cooks, R. G. Metastable loss of nitrosyl radical from aromatic nitro compounds. J. Am. Chem. Soc. 1973, 95, 1739-1745.

Nano Research
Pages 2954-2965
Cite this article:
Wang B, Wen G, Su D. Determination of the acidic properties of carboxylated carbocatalysts in an acid-catalyzed ring-opening reaction using kinetic profiling. Nano Research, 2017, 10(9): 2954-2965. https://doi.org/10.1007/s12274-017-1506-6

580

Views

4

Crossref

N/A

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 23 November 2016
Revised: 24 January 2017
Accepted: 03 February 2017
Published: 08 June 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return