AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An intelligent near-infrared light activatable nanosystem for accurate regulation of zinc signaling in living cells

Wei Li1,2Zhen Liu1Zhaowei Chen1,2Lihua Kang3( )Yijia Guan1,2Jinsong Ren1( )Xiaogang Qu1( )
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
University of Chinese Academy of SciencesBeijing100039China
Stem Cell and Cancer CenterFirst Affiliated Hospital, Jilin UniversityChangchun130061China
Show Author Information

Graphical Abstract

Abstract

Accurate regulation of cellular zinc signaling is imperative to decipher underlying zinc functions and develop new therapeutic agents. However, the ability to modulate zinc in a spatiotemporal manner remains elusive. We herein report an intelligent spiropyran-upconversion (SP-UCNPs) based nanosystem that enables near-infrared (NIR) light-controlled zinc release at precise times and locations. The magnitude of zinc release can be simply manipulated by varying the duration of NIR irradiation. Moreover, the utilization of NIR light not only showed little damage to cells but also significantly improved penetration depth. By evaluating activity of a model protein, phosphatase 2A, we further validated zinc signaling activation. Importantly, our strategy may be broadly applicable to other types of metal ions, like the ubiquitous second messenger calcium. More importantly, our strategy can potentially enable the precise control of specific signaling pathways of metal ions while minimizing cellular damage, facilitating the advanced manipulation of cellular dynamics.

Electronic Supplementary Material

Download File(s)
nr-10-9-3068_ESM.pdf (1.8 MB)

References

1

Kolenko, V.; Teper, E.; Kutikov, A.; Uzzo, R. Zinc and zinc transporters in prostate carcinogenesis. Nat. Rev. Urol. 2013, 10, 219-226.

2

Peng, J. J.; Xu, W.; Teoh, C. L.; Han, S. Y.; Kim, B.; Samanta, A.; Er, J. C.; Wang, L.; Yuan, L.; Liu, X. G. et al. High-efficiency in vitro and in vivo detection of Zn2+ by dye-assembled upconversion nanoparticles. J. Am. Chem. Soc. 2015, 137, 2336-2342.

3

Frederickson, C. J.; Koh, J. Y.; Bush, A. I. The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 2005, 6, 449-462.

4

Chyan, W.; Zhang, D. Y.; Lippard, S. J.; Radford, R. J. Reaction-based fluorescent sensor for investigating mobile Zn2+ in mitochondria of healthy versus cancerous prostate cells. Proc. Natl. Acad. Sci. USA 2014, 111, 143-148.

5

Que, E. L.; Domaille, D. W.; Chang, C. J. Metals in neurobiology: Probing their chemistry and biology with molecular imaging. Chem. Rev. 2008, 108, 1517-1549.

6

Hambley, T. W. Metal-based therapeutics. Science 2007, 318, 1392-1393.

7

Kepp, K. P. Bioinorganic chemistry of Alzheimer's disease. Chem. Rev. 2012, 112, 5193-5239.

8

Magda, D.; Lecane, P.; Wang, Z.; Hu, W. L.; Thiemann, P.; Ma, X.; Dranchak, P. K.; Wang, X. M.; Lynch, V.; Wei, W. H. et al. Synthesis and anticancer properties of water-soluble zinc ionophores. Cancer Res. 2008, 68, 5318-5325.

9

Andersson, D. A.; Gentry, C.; Moss, S.; Bevan, S. Clioquinol and pyrithione activate TRPA1 by increasing intracellular Zn2+. Proc. Natl. Acad. Sci. USA 2009, 106, 8374-8379.

10

Wang, S.; Huang, P.; Chen, X. Y. Stimuli-responsive programmed specific targeting in nanomedicine. ACS Nano 2016, 10, 2991-2994.

11

Sun, T. M.; Zhang, Y. S.; Pang, B.; Hyun, D. C.; Yang, M. X.; Xia, Y. N. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem., Int. Ed. 2014, 53, 12320-12364.

12

Lucky, S. S.; Soo, K. C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990-2042.

13

Zhu, Y.; Li, W. X.; Zhang, Y.; Li, J.; Liang, L.; Zhang, X. Z.; Chen, N.; Sun, Y. H.; Chen, W.; Tai, R. Z. et al. Excessive sodium ions delivered into cells by nanodiamonds: Implications for tumor therapy. Small 2012, 8, 1771-1779.

14

Muhammad, F.; Guo, M. Y.; Qi, W. X.; Sun, F. X.; Wang, A. F.; Guo, Y. J.; Zhu, G. S. pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J. Am. Chem. Soc. 2011, 133, 8778-8781.

15

Xia, T.; Kovochich, M.; Liong, M.; Mädler, L.; Gilbert, B.; Shi, H. B.; Yep, J. I.; Zink, J. I.; Nel, A. E. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008, 2, 2121-2134.

16

Richter, A. P.; Brown, J. S.; Bharti, B.; Wang, A.; Gangwal, S.; Houck, K.; Cohen Hubal, E. A.; Paunov, V. N.; Stoyanov, S. D.; Velev, O. D. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nat. Nanotechnol. 2015, 10, 817-823.

17

Ostrovsky, S.; Kazimirsky, G.; Gedanken, A.; Brodie, C. Selective cytotoxic effect of ZnO nanoparticles on glioma cells. Nano Res. 2009, 2, 882-890.

18

Gorostiza, P.; Isacoff, E. Y. Optical switches for remote and noninvasive control of cell signaling. Science 2008, 322, 395-399.

19

Basa, P. N.; Antala, S.; Dempski, R. E.; Burdette, S. C. A zinc(Ⅱ) photocage based on a decarboxylation metal ion release mechanism for investigating homeostasis and biological signaling. Angew. Chem., Int. Ed. 2015, 54, 13027-13031.

20

Shao, Q.; Xing, B. G. Photoactive molecules for applications in molecular imaging and cell biology. Chem. Soc. Rev. 2010, 39, 2835-2846.

21

Momotake, A.; Lindegger, N.; Niggli, E.; Barsotti, R. J.; Ellis-Davies, G. C. R. The nitrodibenzofuran chromophore: A new caging group for ultra-efficient photolysis in living cells. Nat. Methods 2006, 3, 35-40.

22

Klajn, R. Spiropyran-based dynamic materials. Chem. Soc. Rev. 2014, 43, 148-184.

23

Moo, J. G. S.; Presolski, S.; Pumera, M. Photochromic spatiotemporal control of bubble-propelled micromotors by a spiropyran molecular switch. ACS Nano 2016, 10, 3543-3552.

24

Liu, D. B.; Chen, W. W.; Sun, K.; Deng, K.; Zhang, W.; Wang, Z.; Jiang, X. Y. Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 4103-4107.

25

Sendai, T.; Biswas, S.; Aida, T. Photoreconfigurable supramolecular nanotube. J. Am. Chem. Soc. 2013, 135, 11509-11512.

26

Del Canto, E.; Natali, M.; Movia, D.; Giordani, S. Photo- controlled release of zinc metal ions by spiropyran receptors anchored to single-walled carbon nanotubes. Phys. Chem. Chem. Phys. 2012, 14, 6034-6043.

27

Shanmugam, V.; Selvakumar, S.; Yeh, C. S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 2014, 43, 6254-6287.

28

Zhang, Y. W.; Huang, L.; Li, Z. J.; Ma, G. L.; Zhou, Y. B.; Han, G. Illuminating cell signaling with near-infrared light- responsive nanomaterials. ACS Nano 2016, 10, 3881-3885.

29

Miyako, E.; Russier, J.; Mauro, M.; Cebrian, C.; Yawo, H.; Ménard-Moyon, C.; Hutchison, J. A.; Yudasaka, M.; Iijima, S.; De Cola, L. et al. Photofunctional nanomodulators for bioexcitation. Angew. Chem., Int. Ed. 2014, 53, 13121-13125.

30

Lyu, Y.; Xie, C.; Chechetka, S. A.; Miyako, E.; Pu, K. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J. Am. Chem. Soc. 2016, 138, 9049-9052.

31

Li, X. M.; Zhang, F.; Zhao, D. Y. Lab on upconversion nanoparticles: Optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev. 2015, 44, 1346-1378.

32

Zhu, X. J.; Feng, W.; Chang, J.; Tan, Y. W.; Li, J. C.; Chen, M.; Sun, Y.; Li, F. Y. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 2016, 7, 10437.

33

Gao, H. D.; Thanasekaran, P.; Chiang, C. W.; Hong, J. L.; Liu, Y. C.; Chang, Y. H.; Lee, H. M. Construction of a near-infrared-activatable enzyme platform to remotely trigger intracellular signal transduction using an upconversion nanoparticle. ACS Nano 2015, 9, 7041-7051.

34

Ai, X. Z.; Ho, C. J. H.; Aw, J.; Attia, A. B. E.; Mu, J.; Wang, Y.; Wang, X. Y.; Wang, Y.; Liu, X. G.; Chen, H. B. et al. In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics. Nat. Commun. 2016, 7, 10432.

35

Liu, Y. Y.; Zhang, J. W.; Zuo, C. J.; Zhang, Z.; Ni, D. L.; Zhang, C.; Wang, J.; Zhang, H.; Yao, Z. W.; Bu, W. B. Upconversion nano-photosensitizer targeting into mitochondria for cancer apoptosis induction and cyt c fluorescence monitoring. Nano Res. 2016, 9, 3257-3266.

36

Liu, J. N.; Liu, Y.; Bu, W. B.; Bu, J. W.; Sun, Y.; Du, J. L.; Shi, J. L. Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation. J. Am. Chem. Soc. 2014, 136, 9701-9709.

37

Li, Z.; Liang, T.; Lv, S. W.; Zhuang, Q. G.; Liu, Z. H. A rationally designed upconversion nanoprobe for in vivo detection of hydroxyl radical. J. Am. Chem. Soc. 2015, 137, 11179-11185.

38

Wu, X.; Zhang, Y. W.; Takle, K.; Bilsel, O.; Li, Z. J.; Lee, H.; Zhang, Z. J.; Li, D. S.; Fan, W.; Duan, C. Y. et al. Dye- sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 2016, 10, 1060-1066.

39

Drees, C.; Raj, A. N.; Kurre, R.; Busch, K. B.; Haase, M.; Piehler, J. Engineered upconversion nanoparticles for resolving protein interactions inside living cells. Angew. Chem., Int. Ed. 2016, 55, 11668-11672.

40

Li, W.; Chen, Z. W.; Zhou, L.; Li, Z. H.; Ren, J. S.; Qu, X. G. Noninvasive and reversible cell adhesion and detachment via single-wavelength near-infrared laser mediated photoisomerization. J. Am. Chem. Soc. 2015, 137, 8199-8205.

41

Sontag, J. M.; Sontag, E. Protein phosphatase 2A dysfunction in Alzheimer's disease. Front. Mol. Neurosci. 2014, 7, 16.

42

Gong, C. X.; Lidsky, T.; Wegiel, J.; Zuck, L.; Grundke- Igbal, L.; Iqbal, I. Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain: Implications for neurofibrillary degeneration in Alzheimer's disease. J. Biol. Chem. 2000, 275, 5535-5544.

43

Wang, J. Z.; Grundke-Igbal, I.; Iqbal, K. Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur. J. Neurosci. 2007, 25, 59-68.

44

Xiong, Y.; Jing, X. P.; Zhou, X. W.; Wang, X. L.; Yang, Y.; Sun, X. Y.; Qiu, M.; Cao, F. Y.; Lu, Y. M.; Liu, R. et al. Zinc induces protein phosphatase 2A inactivation and tau hyperphosphorylation through Src dependent PP2A (tyrosine 307) phosphorylation. Neurobiol. Aging 2013, 34, 745-756.

45

Xiong, Y.; Luo, D. J.; Wang, X. L.; Qiu, M.; Yang, Y.; Yan, X.; Wang, J. Z.; Ye, Q. F.; Liu, R. Zinc binds to and directly inhibits protein phosphatase 2A in vitro. Neurosci. Bull. 2015, 31, 331-337.

46

Chen, Z. W.; Zhou, L.; Bing, W.; Zhang, Z. J.; Li, Z. H.; Ren, J. S.; Qu, X. G. Light controlled reversible inversion of nanophosphor-stabilized Pickering emulsions for biphasic enantioselective biocatalysis. J. Am. Chem. Soc. 2014, 136, 7498-7504.

47

Zhou, L.; Chen, Z. W.; Dong, K.; Yin, M. L.; Ren, J. S.; Qu, X. G. DNA-mediated construction of hollow upconversion nanoparticles for protein harvesting and near-infrared light triggered release. Adv. Mater. 2014, 26, 2424-2430.

Nano Research
Pages 3068-3076
Cite this article:
Li W, Liu Z, Chen Z, et al. An intelligent near-infrared light activatable nanosystem for accurate regulation of zinc signaling in living cells. Nano Research, 2017, 10(9): 3068-3076. https://doi.org/10.1007/s12274-017-1522-6

677

Views

9

Crossref

N/A

Web of Science

10

Scopus

1

CSCD

Altmetrics

Received: 22 November 2016
Revised: 06 February 2017
Accepted: 09 February 2017
Published: 20 May 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return