AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Au/Ni12P5 core/shell single-crystal nanoparticles as oxygen evolution reaction catalyst

Yingying Xu§,1Sibin Duan§,1Haoyi Li2Ming Yang3Shijie Wang3Xun Wang2Rongming Wang1( )
Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface ScienceSchool of Mathematics and Physics, University of Science and Technology BeijingBeijing100083China
Department of ChemistryTsinghua UniversityBeijing100084China
Institute of Materials Research and EngineeringA*STAR, 2 Fusionopolis WaySingapore138634Singapore

§ Yingying Xu and Sibin Duan contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

We have demonstrated the improved performance of oxygen evolution reactions (OER) using Au/nickel phosphide (Ni12P5) core/shell nanoparticles (NPs) under basic conditions. NPs with a Ni12P5 shell and a Au core, both of which have well-defined crystal structures, have been prepared using solution-based synthetic routes. Compared with pure Ni12P5 NPs and Au-Ni12P5 oligomer-like NPs, the core/shell crystalline structure with Au shows an improved OER activity. It affords a current density of 10 mA/cm2 at a small overpotential of 0.34 V, in 1 M KOH aqueous solution at room temperature. This enhanced OER activity may relate to the strong structural and effective electronic coupling between the single-crystal core and the shell.

Electronic Supplementary Material

Download File(s)
nr-10-9-3103_ESM.pdf (1.1 MB)

References

1

Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 2009, 1, 7.

2

Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072-1075.

3

Singh, R. N.; Mishra, D.; Anindita; Sinha, A. S. K.; Singh, A. Novel electrocatalysts for generating oxygen from alkaline water electrolysis. Electrochem. Commun. 2007, 9, 1369-1373.

4

Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 2014, 136, 13925-13931.

5

Cui, B.; Lin, H.; Li, J. B.; Li, X.; Yang, J.; Tao, J. Core-ring structured NiCo2O4 nanoplatelets: Synthesis, characterization, and electrocatalytic applications. Adv. Funct. Mater. 2008, 18, 1440-1447.

6

Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383-1385.

7

Mattos-Costa, F. I.; de Lima-Neto, P.; Machado, S. A. S.; Avaca, L. A. Characterisation of surfaces modified by sol-gel derived RuxIr1-xO2 coatings for oxygen evolution in acid medium. Electrochim. Acta 1998, 44, 1515-1523.

8

Over, H. Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: From fundamental to applied research. Chem. Rev. 2012, 112, 3356-3426.

9

Zhou, W. J.; Wu, X. J.; Cao, X. H.; Huang, X.; Tan, C. L.; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921-2924.

10

Zhang, Y. Q.; Ouyang, B.; Xu, J.; Jia, G. C.; Chen, S.; Rawat, R. S.; Fan, H. J. Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem., Int. Ed. 2016, 55, 8670-8674.

11

Cao, X. Y.; Wang, H. N.; Lu, S. F.; Chen, S.; Xiang, Y. An Ni-P/C electro-catalyst with improved activity for the carbohydrazide oxidation reaction. RSC Adv. 2016, 6, 91956-91959.

12

Wang, H. N.; Cao, D.; Xiang, Y.; Liang, D. W.; Lu, S. F. Novel Pd-decorated amorphous Ni-B/C catalysts with enhanced oxygen reduction reaction activities in alkaline media. RSC Adv. 2014, 4, 51126-51132.

13

Surendranath, Y.; Kanan, M. W.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt- phosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501-16509.

14

Song, H.; Dai, M.; Song, H. L.; Wan, X.; Xu, X. W.; Jin, Z. S. A solution-phase synthesis of supported Ni2P catalysts with high activity for hydrodesulfurization of dibenzothiophene. J. Mol. Catal. A-Chem. 2014, 385, 149-159.

15

Oyama, S. T. Novel catalysts for advanced hydroprocessing: Transition metal phosphides. J. Catal. 2003, 216, 343-352.

16

Mi, K.; Ni, Y. H.; Hong, J. M. Solvent-controlled syntheses of Ni12P5 and Ni2P nanocrystals and photocatalytic property comparison. J. Phys. Chem. Solids 2011, 72, 1452-1456.

17

Ni, Y. H.; Liao, K. M.; Li, J. In situ template route for synthesis of porous Ni12P5 superstructures and their applications in environmental treatments. CrystEngComm 2010, 12, 1568-1575.

18

Liu, P.; Rodriguez, J. A. Catalysts for hydrogen evolution from the[NiFe] hydrogenase to the Ni2P(001) surface: The importance of ensemble effect. J. Am. Chem. Soc. 2005, 127, 14871-14878.

19

Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267-9270.

20

Paseka, I. Hydrogen evolution reaction on Ni-P alloys: The internal stress and the activities of electrodes. Electrochim. Acta 2008, 53, 4537-4543.

21

Huang, Z. P.; Chen, Z. B.; Chen, Z. Z.; Lv, C. C.; Meng, H.; Zhang, C. Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis. ACS Nano 2014, 8, 8121-8129.

22

Zhang, G.; Wang, G. C.; Liu, Y.; Liu, H. J.; Qu, J. H.; Li, J. H. Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. J. Am. Chem. Soc. 2016, 138, 14686-14693.

23

Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587-5593.

24

Wu, J. B.; Li, P. P.; Pan, Y. T.; Warren, S.; Yin, X.; Yang, H. Surface lattice-engineered bimetallic nanoparticles and their catalytic properties. Chem. Soc. Rev. 2012, 41, 8066-8074.

25

Zhang, J. T.; Tang, Y.; Lee, K.; Ouyang, M. Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science 2010, 327, 1634-1638.

26

Duan, S. B.; Wang, R. M. Au/Ni12P5 core/shell nanocrystals from bimetallic heterostructures: In situ synthesis, evolution and supercapacitor properties. NPG Asia Mater. 2014, 6, e122.

27

Carenco, S.; Portehault, D.; Boissière, C.; Mézailles, N.; Sanchez, C. 25th anniversary article: Exploring nanoscaled matter from speciation to phase diagrams: Metal phosphide nanoparticles as a case of study. Adv. Mater. 2014, 26, 371-389.

28

Franke, R. X-ray absorption and photoelectron spectroscopy investigation of binary nickel phosphides. Spectrochim. Acta A-Mol. Biomol. Spectrosc. 1997, 53, 933-941.

29

Wu, S. K.; Lai, P. C.; Lin, Y. C. Atmospheric hydro deoxygenation of guaiacol over nickel phosphide catalysts: Effect of phosphorus composition. Catal. Lett. 2014, 144, 878-889.

30

Franke, R.; Chassé, T.; Streubel, P.; Meisel, A. Auger parameters and relaxation energies of phosphorus in solid compounds. J. Electron Spectrosc. Relat. Phenom. 1991, 56, 381-388.

31

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.

32

Su, X. R.; Xu, Y. Y.; Liu, J. L.; Wang, R. M. Controlled synthesis of Ni0.25Co0.75(OH)2 nanoplates and their electro chemical properties. CrystEngComm 2015, 17, 4859-4864.

33

Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83-89.

34

Rossmeisl, J.; Logadottir, A.; Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 2005, 319, 178-184.

35

Hu, J. M.; Zhang, J. Q.; Cao, C. N. Oxygen evolution reaction on IrO2-based DSA® type electrodes: Kinetics analysis of Tafel lines and EIS. Int. J. Hydrogen Energy 2004, 29, 791-797.

36

Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis—Calculations and concepts. Adv. Catal. 2000, 45, 71-129.

37

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane- wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

38

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

39

Yu, M.; Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 2011, 134, 064111.

40

Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter 2009, 21, 084204.

41

Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159-1165.

Nano Research
Pages 3103-3112
Cite this article:
Xu Y, Duan S, Li H, et al. Au/Ni12P5 core/shell single-crystal nanoparticles as oxygen evolution reaction catalyst. Nano Research, 2017, 10(9): 3103-3112. https://doi.org/10.1007/s12274-017-1527-1

629

Views

51

Crossref

N/A

Web of Science

52

Scopus

5

CSCD

Altmetrics

Received: 25 November 2016
Revised: 10 February 2017
Accepted: 11 February 2017
Published: 10 April 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return