Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A novel hierarchical electrode material for Na-ion batteries composed of Sb nanoplates on Ni nanorod arrays is developed to tackle the issues of the rapid capacity fading and poor rate capability of Sb-based materials. The three- dimensional (3D) Sb-Ni nanoarrays as anodes exhibit the synergistic effects of the two-dimensional nanoplates and the open and conductive array structure as well as strong structural integrity. Further, their capacitive behavior is confirmed through a kinetics analysis, which shows that their excellent Na-storage performance is attributable to their unique nanostructure. When used as binder-free sodium-ion battery (SIB) anodes, the nanoarrays exhibit a high capacity retention rate (more than 80% over 200 cycles) at a current density of 0.5 A·g–1 and excellent rate capacity (up to 20 A·g–1), with their capacity being 580 mAh·g–1. Moreover, a P2-Na2/3Ni1/3Mn2/3O2//3D Sb-Ni nanoarrays full cell delivers a highly reversible capacity of 579.8 mAh·g–1 over 200 cycles and an energy density as high as 100 Wh·kg–1. This design strategy for ensuring fast and stable Na storage may work with other electrode materials as well.
Hasa, I.; Passerini, S.; Hassoun, J. A rechargeable sodium-ion battery using a nanostructured Sb–C anode and P2-type layered Na0.6Ni0.22Fe0.11Mn0.66O2 cathode. RSC Adv. 2015, 5, 48928–48934.
Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.
Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.
Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N.-S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081.
Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.
Stevens, D. A.; Dahn, J. R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271–1273.
Jeong, G.; Kim, Y.-U.; Kim, H.; Kim, Y.-J.; Sohn, H.-J. Prospective materials and applications for Li secondary batteries. Energy Environ. Sci. 2011, 4, 1986–2002.
Hu, L. Y.; Zhu, X. S.; Du, Y. C.; Li, Y. F.; Zhou, X. S.; Bao, J. C. A chemically coupled antimony/multilayer graphene hybrid as a high-performance anode for sodium-ion batteries. Chem. Mater. 2015, 27, 8138–8145.
Xu, Y. H.; Liu, Q.; Zhu, Y. J.; Liu, Y. H.; Langrock, A.; Zachariah, M. R.; Wang, C. S. Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett. 2013, 13, 470–474.
Xiao, L. F.; Cao, Y. L.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z. M.; Liu, J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun. 2012, 48, 3321–3323.
Chevrier, V. L.; Ceder, G. Challenges for Na-ion negative electrodes. J. Electrochem. Soc. 2011, 158, A1011–A1014.
Wu, L.; Lu, H. Y.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries. J. Mater. Chem. A 2015, 3, 5708–5713.
Xie, X. Q.; Kretschmer, K.; Zhang, J. Q.; Sun, B.; Su, D. W.; Wang, G. X. Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries. Nano Energy 2015, 13, 208–217.
Chao, D. L.; Zhu, C. R.; Yang, P. H.; Xia, X. H.; Liu, J. L.; Wang, J.; Fan, X. F.; Savilov, S. V.; Lin, J. Y.; Fan, H. J. et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 2016, 7, 12122.
Lee, G.-H.; Shim, H.-W.; Kim, D.-W. Superior long-life and high-rate Ge nanoarrays anchored on Cu/C nanowire frameworks for Li-ion battery electrodes. Nano Energy 2015, 13, 218–225.
Song, X. S.; Li, X. F.; Bai, Z. M.; Yan, B.; Li, D. J.; Sun, X. L. Morphology-dependent performance of nanostructured Ni3S2/Ni anode electrodes for high performance sodium ion batteries. Nano Energy 2016, 26, 533–540.
Ko, Y. N.; Kang, Y. C. Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na-ion battery anode materials. Chem. Commun. 2014, 50, 12322–12324.
He, M.; Kravchyk, K.; Walter, M.; Kovalenko, M. V. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: Nano versus bulk. Nano Lett. 2014, 14, 1255–1262.
Hou, H. S.; Jing, M. J.; Yang, Y. C.; Zhu, Y. R.; Fang, L. B.; Song, W. X.; Pan, C. C.; Yang, X. M.; Ji, X. B. Sodium/ lithium storage behavior of antimony hollow nanospheres for rechargeable batteries. ACS Appl. Mater. Interfaces 2014, 6, 16189–16196.
Wang, N.; Bai, Z. C.; Qian, Y. T.; Yang, J. Double-walled Sb@TiO2−x nanotubes as a superior high-rate and ultralong- lifespan anode material for Na-ion and Li-ion batteries. Adv. Mater. 2016, 28, 4126–4133.
Liu, J.; Yang, Z. Z.; Wang, J. Q.; Gu, L.; Maier, J.; Yu, Y. Three-dimensionally interconnected nickel–antimony intermetallic hollow nanospheres as anode material for high-rate sodium-ion batteries. Nano Energy 2015, 16, 389–398.
Zhang, N.; Liu, Y. C.; Lu, Y. Y.; Han, X. P.; Cheng, F. Y.; Chen, J. Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Res. 2015, 8, 3384–3393.
Liu, S.; Feng, J. K.; Bian, X. F.; Liu, J.; Xu, H. The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries. Energy Environ. Sci. 2016, 9, 1229–1236.
Wang, J. Z.; Du, N.; Zhang, H.; Yu, J. X.; Yang, D. R. Cu–Ge core–shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries. J. Mater. Chem. 2012, 22, 1511–1515.
Lee, C. W.; Kim, J.-C.; Park, S.; Song, H. J.; Kim, D.-W. Highly stable sodium storage in 3-D gradational Sb–NiSb–Ni heterostructures. Nano Energy 2015, 15, 479–489.
Xu, Y.; Zhou, M.; Wen, L. Y.; Wang, C. L.; Zhao, H. P.; Mi, Y.; Liang, L. Y.; Fu, Q.; Wu, M. H.; Lei, Y. Highly ordered three-dimensional Ni-TiO2 nanoarrays as sodium ion battery anodes. Chem. Mater. 2015, 27, 4274–4280.
Ke, F.-S.; Huang, L.; Solomon, B. C.; Wei, G.-Z.; Xue, L.-J.; Zhang, B.; Li, J.-T.; Zhou, X.-D.; Sun, S.-G. Three- dimensional nanoarchitecture of Sn–Sb–Co alloy as an anode of lithium-ion batteries with excellent lithium storage performance. J. Mater. Chem. 2012, 22, 17511–17517.
Wang, J. Z.; Du, N.; Zhang, H.; Yu, J. X.; Yang, D. R. Cu–Sn core–shell nanowire arrays as three-dimensional electrodes for lithium-ion batteries. J. Phys. Chem. C 2011, 115, 23620–23624.
Ryou, M. H.; Kim, J.; Lee, I.; Kim, S.; Jeong, Y. K.; Hong, S.; Ryu, J. H.; Kim, T. S.; Park, J. K.; Lee, H. et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv. Mater. 2013, 25, 1571–1576.
Zhao, F. P.; Han, N.; Huang, W. J.; Li, J. J.; Ye, H. L.; Chen, F. J.; Li, Y. G. Nanostructured CuP2/C composites as high-performance anode materials for sodium ion batteries. J. Mater. Chem. A 2015, 3, 21754–21759.
Ellis, B. L.; Knauth, P.; Djenizian, T. Three-dimensional self-supported metal oxides for advanced energy storage. Adv. Mater. 2014, 26, 3368–3397.
Fan, M. P.; Chen, Y.; Xie, Y. H.; Yang, T. Z.; Shen, X. W.; Xu, N.; Yu, H. Y.; Yan, C. L. Half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes. Adv. Funct. Mater. 2016, 26, 5019–5027.
Liu, Y. H.; Xu, Y. H.; Zhu, Y. J.; Culver, J. N.; Lundgren, C. A.; Xu, K.; Wang, C. S. Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano 2013, 7, 3627–3634.
Liang, L. Y.; Xu, Y.; Wang, C. L.; Wen, L. Y.; Fang, Y. G.; Mi, Y.; Zhou, M.; Zhao, H. P.; Lei, Y. Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 2954–2962.
Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism. J. Am. Chem. Soc. 2012, 134, 20805–20811.
Baggetto, L.; Ganesh, P.; Sun, C. N.; Meisner, R. A.; Zawodzinski, T. A.; Veith, G. M. Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: Experiment and theory. J. Mater. Chem. A 2013, 1, 7985–7994.
Baggetto, L.; Hah, H.-Y.; Jumas, J. C.; Johnson, C. E.; Johnson, J. A.; Keum, J. K.; Bridges, C. A.; Veith, G. M. The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mössbauer spectroscopies. J. Power Sources 2014, 267, 329–336.
Ji, L. W.; Gu, M.; Shao, Y. Y.; Li, X. L.; Engelhard, M. H.; Arey, B. W.; Wang, W.; Nie, Z. M.; Xiao, J.; Wang, C. M. et al. Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv. Mater. 2014, 26, 2901–2908.
Zhou, X. L.; Zhong, Y. R.; Yang, M.; Hu, M.; Wei, J. P.; Zhou, Z. Sb nanoparticles decorated N-rich carbon nanosheets as anode materials for sodium ion batteries with superior rate capability and long cycling stability. Chem. Commun. 2014, 50, 12888–12891.
Luo, B.; Wang, B.; Li, X. L.; Jia, Y. Y.; Liang, M. H.; Zhi, L. J. Graphene-confined Sn nanosheets with enhanced lithium storage capability. Adv. Mater. 2012, 24, 3538–3543.
Zhu, Y. J.; Han, X. G.; Xu, Y. H.; Liu, Y. H.; Zheng, S. Y.; Xu, K.; Hu, L. B.; Wang, C. S. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano 2013, 7, 6378–6386.
He, C. N.; Wu, S.; Zhao, N. Q.; Shi, C. S.; Liu, E. Z.; Li, J. J. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 2013, 7, 4459–4469.
Jia, X. L.; Chen, Z.; Cui, X.; Peng, Y. T.; Wang, X. L.; Wang, G.; Wei, F.; Lu, Y. F. Building robust architectures of carbon and metal oxide nanocrystals toward high- performance anodes for lithium-ion batteries. ACS Nano 2012, 6, 9911–9919.
Zhang, W.; Liu, Y. T.; Chen, C. J.; Li, Z.; Huang, Y. H.; Hu, X. L. Flexible and binder-free electrodes of Sb/rGO and Na3V2(PO4)3/rGO nanocomposites for sodium-ion batteries. Small 2015, 11, 3822–3829.
Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 2015, 27, 3305–3309.
Ardizzone, S.; Fregonara, G.; Trasatti, S. "Inner" and "outer" active surface of RuO2 electrodes. Electrochim. Acta 1990, 35, 263–267.
Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.
Chen, Z.; Augustyn, V.; Jia, X. L.; Xiao, Q. F.; Dunn, B.; Lu, Y. F. High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 2012, 6, 4319–4327.
Yu, D. Y. W.; Prikhodchenko, P. V.; Mason, C. W.; Batabyal, S. K.; Gun, J.; Sladkevich, S.; Medvedev, A. G.; Lev, O. High-capacity antimony sulphide nanoparticle- decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 2013, 4, 2922.
Yang, Y.; Fan, X. J.; Casillas, G.; Peng, Z. W.; Ruan, G. D.; Wang, G.; Yacaman, M. J.; Tour, J. M. Three-dimensional nanoporous Fe2O3/Fe3C-graphene heterogeneous thin films for lithium-ion batteries. ACS Nano 2014, 8, 3939–3946.
Zhukoskii, Y. F.; Balaya, P.; Kotomin, E. A.; Maier, J. Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations. Phys. Rev. Lett. 2006, 96, 058302.
Jamnik, J.; Maier, J. Nanocrystallinity effects in lithium battery materials: Aspects of nano-ionics. Part Ⅳ. Phys. Chem. Chem. Phys. 2003, 5, 5215–5220.
Shin, J. Y.; Samuelis, D.; Maier, J. Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: Emphasis on interfacial storage phenomena. Adv. Funct. Mater. 2011, 21, 3464–3472.
Balaya, P. Size effects and nanostructured materials for energy applications. Energy Environ. Sci. 2008, 1, 645–654.
Nam, D. H.; Hong, K. S.; Lim, S. J.; Kim, M. J.; Kwon, H. S. High-performance Sb/Sb2O3 anode materials using a polypyrrole nanowire network for Na-ion batteries. Small 2015, 11, 2885–2892.