AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly uniform and nonlinear selection device based on trapezoidal band structure for high density nano-crossbar memory array

Qing Luo1,2Xiaoxin Xu1,2Hangbing Lv1,2,3( )Tiancheng Gong1,2Shibing Long1,2Qi Liu1,2Ling Li1,2Ming Liu1,2,3( )
Key Laboratory of Microelectronics Devices & Integrated TechnologyInstitute of MicroelectronicsChinese Academy of SciencesBeijing100029China
University of Chinese Academy of SciencesBeijing100049China
Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing211800China
Show Author Information

Graphical Abstract

Abstract

Crossbar array provides a cost-effective approach for achieving high-density integration of two-terminal functional devices. However, the "sneaking current problem", which can lead to read failure, is a severe challenge in crossbar arrays. To inhibit the sneaking current from unselected cells, the integration of individual selection devices is necessary. In this work, we report a novel TaOx-based selector exhibiting a trapezoidal band structure formed by tuning the concentration of defects in the oxide. Salient features such as a high current density (1 MA·cm–2), high selectivity (5 × 104), low off-state current (~10 pA), robust endurance (> 1010), self-compliance, and excellent uniformity were successfully achieved. The integrated one-selector one-resistor (1S1R) device exhibits high nonlinearity in the low resistance state (LRS), which is quite effective in solving the sneaking current issue.

Electronic Supplementary Material

Download File(s)
nr-10-10-3295_ESM.pdf (1.6 MB)

References

1

Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840.

2

Yu, S. M.; Chen, H. Y.; Gao, B.; Kang, J. F.; Wong, H. S. P. HfO x -based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture. ACS Nano 2013, 7, 2320–2325.

3

Yang, J. J.; Pickett, M. D.; Li, X. M.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433.

4

Xia, Q. F.; Yang, J. J.; Wu, W.; Li, X. M.; Williams, R. S. Self-aligned memristor cross-point arrays fabricated with one nanoimprint lithography step. Nano Lett. 2010, 10, 2909–2914.

5

Tian, X. Z.; Wang, L. F.; Wei, J. K.; Yang, S. Z.; Wang, W. L.; Xu, Z.; Bai, X. D. Filament growth dynamics in solid electrolyte-based resistive memories revealed by in situ TEM. Nano Res. 2014, 7, 1065–1072.

6

Sun, Y. H.; Yan, X. Q.; Zheng, X.; Liu, Y. C.; Shen, Y. W.; Zhang, Y. Influence of carrier concentration on the resistive switching characteristics of a ZnO-based memristor. Nano Res. 2016, 9, 1116–1124.

7

Wu, Y.; Wei, Y.; Huang, Y.; Cao, F.; Yu, D. J.; Li, X. M.; Zeng, H. B. Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Res. 2017, 10, 1584–1594.

8

Wong, H. S. P.; Salahuddin, S. Memory leads the way to better computing. Nat. Nanotechnol. 2015, 10, 191–194.

9

Xia, Q. F.; Robinett, W.; Cumbie, M. W.; Banerjee, N.; Cardinali, T. J.; Yang, J. J.; Wu, W.; Li, X. M.; Tong, W. M.; Strukov, D. B. et al. Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 2009, 9, 3640–3645.

10

Cassinerio, M.; Ciocchini, N.; Ielmini, D. Logic computation in phase change materials by threshold and memory switching. Adv. Mater. 2013, 25, 5975–5980.

11

Huang, P.; Kang, J.; Zhao, Y.; Chen, S.; Han, R.; Zhou, Z.; Chen, Z.; Ma, W.; Li, M.; Liu, L.; Liu, X. Reconfigurable nonvolatile logic operations in resistance switching crossbar array for large-scale circuits. Adv. Mater. 2016, 28, 9758–9764.

12

Adam, G. C.; Hoskins, B. D.; Prezioso, M.; Strukov, D. B. Optimized stateful material implication logic for threedimensional data manipulation. Nano Res. 2016, 9, 3914–3923.

13

Lee, T. H.; Loke, D.; Huang, K. J.; Wang, W. J.; Elliott, S. R. Tailoring transient-amorphous states: Towards fast and power-efficient phase-change memory and neuromorphic computing. Adv. Mater. 2014, 26, 7493–7498.

14

Yu, S. M.; Gao, B.; Fang, Z.; Yu, H. Y.; Kang, J. F.; Wong, H. S. P. A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation. Adv. Mater. 2013, 25, 1774–1779.

15

Gao, B.; Bi, Y. J.; Chen, H. Y.; Liu, R.; Huang, P.; Chen, B.; Liu, L. F.; Liu, X. Y.; Yu, S. M.; Wong, H. S. P. et al. Ultra-low-energy three-dimensional oxide-based electronic synapses for implementation of robust high-accuracy neuromorphic computation systems. ACS Nano 2014, 8, 6998–7004.

16

Wang, Z. R.; Joshi, S.; Savel'ev, S. E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J. P.; Li, Z. Y. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101–108.

17

Eigler, D. M.; Lutz, C. P.; Rudge, W. E. An atomic switch realized with the scanning tunnelling microscope. Nature 1991, 352, 600–603.

18

Krishnan, K.; Tsuruoka, T.; Mannequin, C.; Aono, M. Mechanism for conducting filament growth in self-assembled polymer thin films for redox-based atomic switches. Adv. Mater. 2016, 28, 640–648.

19

Simpson, R. E.; Fons, P.; Kolobov, A. V.; Fukaya, T.; Krbal, M.; Yagi, T.; Tominaga, J. Interfacial phase-change memory. Nat. Nanotechnol. 2011, 6, 501–505.

20

Hegedüs, J.; Elliott, S. R. Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. Nat. Mater. 2008, 7, 399–405.

21

Sankey, J. C.; Cui, Y. -T.; Sun, J. Z.; Slonczewski, J. C.; Buhrman, R. A.; Ralph, D. C. Measurement of the spintransfer-torque vector in magnetic tunnel junctions. Nat. Phys. 2008, 4, 67–71.

22

Liu, L. Q.; Pai, C. -F.; Li, Y.; Tseng, H. W.; Ralph, D. C.; Buhrman, R. A. Spin-torque switching with the giant spin hall effect of tantalum. Science 2012, 336, 555–558.

23

Xiong, F.; Liao, A. D.; Estrada, D.; Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 2011, 332, 568–570.

24

Bandaru, P. R.; Daraio, C.; Jin, S.; Rao, A. M. Novel electrical switching behaviour and logic in carbon nanotube Y-junctions. Nat. Mater. 2005, 4, 663–666.

25

Jiang, A. Q.; Wang, C.; Jin, K. J.; Liu, X. B.; Scott, J. F.; Hwang, C. S.; Tang, T. A.; Lu, H. B.; Yang, G. Z. A resistive memory in semiconducting BiFeO3 thin-film capacitors. Adv. Mater. 2011, 23, 1277–1281.

26
Luo, Q.; Xu, X. X.; Liu, H. T.; Lv, H. B.; Gong, T. C.; Long, S. B.; Liu, Q.; Sun, H. T.; Banerjee, W.; Li, L. et al. Cu BEOL compatible selector with high selectivity (>107), extremely low off-current (~pA) and high endurance (>1010). In 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, 2015, pp 10.4.1–10.4.4.https://doi.org/10.1109/IEDM.2015.7409669
27
Gopalakrishnan, K.; Shenoy, R. S.; Rettner, C. T.; Virwani, K.; Bethune, D. S.; Shelby, R. M.; Burr, G. W.; Kellock, A.; King, R. S.; Nguyen, K. et al. Highly-scalable novel access device based on mixed ionic electronic conduction (MIEC) materials for high density phase change memory (PCM) arrays. In 2010 Symposium on VLSI Technology, Honolulu, 2010, pp 205–206.https://doi.org/10.1109/VLSIT.2010.5556229
28

Son, M.; Lee, J.; Park, J.; Shin, J.; Choi, G.; Jung, S.; Lee, W.; Kim, S.; Park, S.; Hwang, H. Excellent selector characteristics of nanoscale VO2 for high-density bipolar ReRAM applications. IEEE Electron Device Lett. 2011, 32, 1579–1581.

29
Kim, S.; Liu, X. J.; Park, J.; Jung, S.; Lee, W.; Woo, J.; Shin, J.; Choi, G.; Cho, C.; Park, S. et al. Ultrathin (<10 nm) Nb2O5/NbO2 hybrid memory with both memory and selector characteristics for high density 3D vertically stackable RRAM applications. In 2012 Symposium on VLSI Technology (VLSIT), Honolulu, HI, 2012, pp 155–156.https://doi.org/10.1109/VLSIT.2012.6242508
30

Huang, J. -J.; Tseng, Y. -M.; Hsu, C. -W.; Hou, T. -H. Bipolar Ni/TiO2/Ni selector for 1S1R crossbar array applications. IEEE Electron Device Lett. 2011, 32, 1427–1429.

31

Lee, W.; Park, J.; Kim, S.; Woo, J.; Shin, J.; Choi, G.; Park, S.; Lee, D.; Cha, E.; Lee, B. H. et al. High current density and nonlinearity combination of selection device based on TaO x /TiO2/TaO x structure for one selector–one resistor arrays. ACS Nano 2012, 6, 8166–8172.

32

Likharev, K. K. Layered tunnel barriers for nonvolatile memory devices. Appl. Phys. Lett. 1998, 73, 2137–2139.

33

Allyn, C. L.; Gossard, A. C.; Wiegmann, W. New rectifying semiconductor structure by molecular beam epitaxy. Appl. Phys. Lett. 1980, 36, 373–376.

34

Malik, R. J.; Aucoin, T. R.; Ross, R. L.; Board, K.; Wood, C. E. C.; Eastman, L. F. Planar-doped barriers in GaAs by molecular beam epitaxy. Electron. Lett. 1980, 16, 836–838.

35

Simmons, J. G. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 1963, 34, 2581–2590.

36

Simmons, J. G. Potential barriers and emission-limited current flow between closely spaced parallel metal electrodes. J. Appl. Phys. 1964, 35, 2472–2481.

37

Xu, X. X.; Lv, H. B.; Li, Y. X.; Liu, H. T.; Wang, M.; Liu, Q.; Long, S. B.; Liu, M. Degradation of gate voltage controlled multilevel storage in one transistor one resistor electrochemical metallization cell. IEEE Electron Device Lett. 2015, 36, 555–557.

Nano Research
Pages 3295-3302
Cite this article:
Luo Q, Xu X, Lv H, et al. Highly uniform and nonlinear selection device based on trapezoidal band structure for high density nano-crossbar memory array. Nano Research, 2017, 10(10): 3295-3302. https://doi.org/10.1007/s12274-017-1542-2

631

Views

10

Crossref

N/A

Web of Science

11

Scopus

1

CSCD

Altmetrics

Received: 29 November 2016
Revised: 15 February 2017
Accepted: 17 February 2017
Published: 06 May 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return