Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Crossbar array provides a cost-effective approach for achieving high-density integration of two-terminal functional devices. However, the "sneaking current problem", which can lead to read failure, is a severe challenge in crossbar arrays. To inhibit the sneaking current from unselected cells, the integration of individual selection devices is necessary. In this work, we report a novel TaOx-based selector exhibiting a trapezoidal band structure formed by tuning the concentration of defects in the oxide. Salient features such as a high current density (1 MA·cm–2), high selectivity (5 × 104), low off-state current (~10 pA), robust endurance (> 1010), self-compliance, and excellent uniformity were successfully achieved. The integrated one-selector one-resistor (1S1R) device exhibits high nonlinearity in the low resistance state (LRS), which is quite effective in solving the sneaking current issue.
Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840.
Yu, S. M.; Chen, H. Y.; Gao, B.; Kang, J. F.; Wong, H. S. P. HfO x -based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture. ACS Nano 2013, 7, 2320–2325.
Yang, J. J.; Pickett, M. D.; Li, X. M.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433.
Xia, Q. F.; Yang, J. J.; Wu, W.; Li, X. M.; Williams, R. S. Self-aligned memristor cross-point arrays fabricated with one nanoimprint lithography step. Nano Lett. 2010, 10, 2909–2914.
Tian, X. Z.; Wang, L. F.; Wei, J. K.; Yang, S. Z.; Wang, W. L.; Xu, Z.; Bai, X. D. Filament growth dynamics in solid electrolyte-based resistive memories revealed by in situ TEM. Nano Res. 2014, 7, 1065–1072.
Sun, Y. H.; Yan, X. Q.; Zheng, X.; Liu, Y. C.; Shen, Y. W.; Zhang, Y. Influence of carrier concentration on the resistive switching characteristics of a ZnO-based memristor. Nano Res. 2016, 9, 1116–1124.
Wu, Y.; Wei, Y.; Huang, Y.; Cao, F.; Yu, D. J.; Li, X. M.; Zeng, H. B. Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Res. 2017, 10, 1584–1594.
Wong, H. S. P.; Salahuddin, S. Memory leads the way to better computing. Nat. Nanotechnol. 2015, 10, 191–194.
Xia, Q. F.; Robinett, W.; Cumbie, M. W.; Banerjee, N.; Cardinali, T. J.; Yang, J. J.; Wu, W.; Li, X. M.; Tong, W. M.; Strukov, D. B. et al. Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 2009, 9, 3640–3645.
Cassinerio, M.; Ciocchini, N.; Ielmini, D. Logic computation in phase change materials by threshold and memory switching. Adv. Mater. 2013, 25, 5975–5980.
Huang, P.; Kang, J.; Zhao, Y.; Chen, S.; Han, R.; Zhou, Z.; Chen, Z.; Ma, W.; Li, M.; Liu, L.; Liu, X. Reconfigurable nonvolatile logic operations in resistance switching crossbar array for large-scale circuits. Adv. Mater. 2016, 28, 9758–9764.
Adam, G. C.; Hoskins, B. D.; Prezioso, M.; Strukov, D. B. Optimized stateful material implication logic for threedimensional data manipulation. Nano Res. 2016, 9, 3914–3923.
Lee, T. H.; Loke, D.; Huang, K. J.; Wang, W. J.; Elliott, S. R. Tailoring transient-amorphous states: Towards fast and power-efficient phase-change memory and neuromorphic computing. Adv. Mater. 2014, 26, 7493–7498.
Yu, S. M.; Gao, B.; Fang, Z.; Yu, H. Y.; Kang, J. F.; Wong, H. S. P. A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation. Adv. Mater. 2013, 25, 1774–1779.
Gao, B.; Bi, Y. J.; Chen, H. Y.; Liu, R.; Huang, P.; Chen, B.; Liu, L. F.; Liu, X. Y.; Yu, S. M.; Wong, H. S. P. et al. Ultra-low-energy three-dimensional oxide-based electronic synapses for implementation of robust high-accuracy neuromorphic computation systems. ACS Nano 2014, 8, 6998–7004.
Wang, Z. R.; Joshi, S.; Savel'ev, S. E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J. P.; Li, Z. Y. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101–108.
Eigler, D. M.; Lutz, C. P.; Rudge, W. E. An atomic switch realized with the scanning tunnelling microscope. Nature 1991, 352, 600–603.
Krishnan, K.; Tsuruoka, T.; Mannequin, C.; Aono, M. Mechanism for conducting filament growth in self-assembled polymer thin films for redox-based atomic switches. Adv. Mater. 2016, 28, 640–648.
Simpson, R. E.; Fons, P.; Kolobov, A. V.; Fukaya, T.; Krbal, M.; Yagi, T.; Tominaga, J. Interfacial phase-change memory. Nat. Nanotechnol. 2011, 6, 501–505.
Hegedüs, J.; Elliott, S. R. Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. Nat. Mater. 2008, 7, 399–405.
Sankey, J. C.; Cui, Y. -T.; Sun, J. Z.; Slonczewski, J. C.; Buhrman, R. A.; Ralph, D. C. Measurement of the spintransfer-torque vector in magnetic tunnel junctions. Nat. Phys. 2008, 4, 67–71.
Liu, L. Q.; Pai, C. -F.; Li, Y.; Tseng, H. W.; Ralph, D. C.; Buhrman, R. A. Spin-torque switching with the giant spin hall effect of tantalum. Science 2012, 336, 555–558.
Xiong, F.; Liao, A. D.; Estrada, D.; Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 2011, 332, 568–570.
Bandaru, P. R.; Daraio, C.; Jin, S.; Rao, A. M. Novel electrical switching behaviour and logic in carbon nanotube Y-junctions. Nat. Mater. 2005, 4, 663–666.
Jiang, A. Q.; Wang, C.; Jin, K. J.; Liu, X. B.; Scott, J. F.; Hwang, C. S.; Tang, T. A.; Lu, H. B.; Yang, G. Z. A resistive memory in semiconducting BiFeO3 thin-film capacitors. Adv. Mater. 2011, 23, 1277–1281.
Son, M.; Lee, J.; Park, J.; Shin, J.; Choi, G.; Jung, S.; Lee, W.; Kim, S.; Park, S.; Hwang, H. Excellent selector characteristics of nanoscale VO2 for high-density bipolar ReRAM applications. IEEE Electron Device Lett. 2011, 32, 1579–1581.
Huang, J. -J.; Tseng, Y. -M.; Hsu, C. -W.; Hou, T. -H. Bipolar Ni/TiO2/Ni selector for 1S1R crossbar array applications. IEEE Electron Device Lett. 2011, 32, 1427–1429.
Lee, W.; Park, J.; Kim, S.; Woo, J.; Shin, J.; Choi, G.; Park, S.; Lee, D.; Cha, E.; Lee, B. H. et al. High current density and nonlinearity combination of selection device based on TaO x /TiO2/TaO x structure for one selector–one resistor arrays. ACS Nano 2012, 6, 8166–8172.
Likharev, K. K. Layered tunnel barriers for nonvolatile memory devices. Appl. Phys. Lett. 1998, 73, 2137–2139.
Allyn, C. L.; Gossard, A. C.; Wiegmann, W. New rectifying semiconductor structure by molecular beam epitaxy. Appl. Phys. Lett. 1980, 36, 373–376.
Malik, R. J.; Aucoin, T. R.; Ross, R. L.; Board, K.; Wood, C. E. C.; Eastman, L. F. Planar-doped barriers in GaAs by molecular beam epitaxy. Electron. Lett. 1980, 16, 836–838.
Simmons, J. G. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 1963, 34, 2581–2590.
Simmons, J. G. Potential barriers and emission-limited current flow between closely spaced parallel metal electrodes. J. Appl. Phys. 1964, 35, 2472–2481.
Xu, X. X.; Lv, H. B.; Li, Y. X.; Liu, H. T.; Wang, M.; Liu, Q.; Long, S. B.; Liu, M. Degradation of gate voltage controlled multilevel storage in one transistor one resistor electrochemical metallization cell. IEEE Electron Device Lett. 2015, 36, 555–557.