Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Self-powered pressure sensor for ultra-wide range pressure detection

Kaushik ParidaVenkateswarlu BhavanasiVipin KumarRamaraju BendiPooi See Lee()
School of Materials Science and EngineeringNanyang Technological UniversityNanyang Avenue639798Singapore
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

The next generation of sensors should be self-powered, maintenance-free, precise, and have wide-ranging sensing abilities. Despite extensive research and development in the field of pressure sensors, the sensitivity of most pressure sensors declines significantly at higher pressures, such that they are not able to detect a wide range of pressures with a uniformly high sensitivity. In this work, we demonstrate a single-electrode triboelectric pressure sensor, which can detect a wide range of pressures from 0.05 to 600 kPa with a high degree of sensitivity across the entire range by utilizing the synergistic effects of the piezoelectric polarization and triboelectric surface charges of self-polarized polyvinyldifluoride-trifluoroethylene (P(VDF-TrFE)) sponge. Taking into account both this wide pressure range and the sensitivity, this device exhibits the best performance relative to that of previously reported self-powered pressure sensors. This achievement facilitates wide-range pressure detection for a broad spectrum of applications, ranging from simple human touch, sensor networks, smart robotics, and sports applications, thus paving the way forward for the realization of next-generation sensing devices. Moreover, this work addresses the critical issue of saturation pressure in triboelectric nanogenerators and provides insights into the role of the surface charge on a piezoelectric polymer when used in a triboelectric nanogenerator.

Electronic Supplementary Material

Download File(s)
nr-10-10-3557_ESM.pdf (3 MB)

References

1

Rogers, J. A. Electronics: A diverse printed future. Nature 2010, 468, 177–178.

2

Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

3

Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G.; Yang, R. S.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.

4

Tian, H.; Shu, Y.; Wang, X. F.; Mohammad, M. A.; Bie, Z.; Xie, Q. Y.; Li, C.; Mi, W. T.; Yang, Y.; Ren, T. L. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci. Rep. 2015, 5, 8603.

5

Zang, Y. P.; Zhang, F. J.; Di, C. A.; Zhu, D. B. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2015, 2, 140–156.

6

Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792.

7

Schwartz, G.; Tee, B. C. K.; Mei, J. G.; Appleton, A. L.; Kim, D. H.; Wang, H. L.; Bao, Z. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 2013, 4, 1859.

8

Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.

9

Park, J.; Lee, Y.; Hong, J.; Ha, M.; Jung, Y. D.; Lim, H.; Kim, S. Y.; Ko, H. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 2014, 8, 4689–4697.

10

Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.

11

Yao, H. B.; Ge, J.; Wang, C. F.; Wang, X.; Hu, W.; Zheng, Z. J.; Ni, Y.; Yu, S. H. A flexible and highly pressuresensitive graphene–polyurethane sponge based on fractured microstructure design. Adv. Mater. 2013, 25, 6692–6698.

12

Lee, J. H.; Yoon, H. J.; Kim, T. Y.; Gupta, M. K.; Lee, J. H.; Seung, W.; Ryu, H.; Kim, S. W. Micropatterned P(VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors. Adv. Funct. Mater. 2015, 25, 3203–3209.

13

Chun, J.; Lee, K. Y.; Kang, C. Y.; Kim, M. W.; Kim, S. W.; Baik, J. M. Embossed hollow hemisphere-based piezoelectric nanogenerator and highly responsive pressure sensor. Adv. Funct. Mater. 2014, 24, 2038–2043.

14

Wu, W. Z.; Wen, X. N.; Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 2013, 340, 952–957.

15

Chun, J.; Kang, N. R.; Kim, J. Y.; Noh, M. S.; Kang, C. Y.; Choi, D.; Kim, S. W.; Wang, Z. L.; Baik, J. M. Highly anisotropic power generation in piezoelectric hemispheres composed stretchable composite film for self-powered motion sensor. Nano Energy 2015, 11, 1–10.

16

Hu, Y. F.; Xu, C.; Zhang, Y.; Lin, L.; Snyder, R. L.; Wang, Z. L. A nanogenerator for energy harvesting from a rotating tire and its application as a self-powered pressure/speed sensor. Adv. Mater. 2011, 23, 4068–4071.

17

Persano, L.; Dagdeviren, C.; Su, Y. W.; Zhang, Y. H.; Girardo, S.; Pisignano, D.; Huang, Y. G.; Rogers, J. A. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 2013, 4, 1633.

18

Lin, L.; Xie, Y. N.; Wang, S. H.; Wu, W. Z.; Niu, S. M.; Wen, X. N.; Wang, Z. L. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 2013, 7, 8266–8274.

19

Fan, F. -R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and selfpowered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.

20

Lee, K. Y.; Yoon, H. J.; Jiang, T.; Wen, X. N.; Seung, W.; Kim, S. W.; Wang, Z. L. Fully packaged self-powered triboelectric pressure sensor using hemispheres-array. Adv. Energy Mater. 2016, 6, 1502566.

21

Zhu, G.; Yang, W. Q.; Zhang, T. J.; Jing, Q. S.; Chen, J.; Zhou, Y. S.; Bai, P.; Wang, Z. L. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 2014, 14, 3208–3213.

22

Wang, X. D.; Zhang, H. L.; Dong, L.; Han, X.; Du, W. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Self-powered highresolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping. Adv. Mater. 2016, 28, 2896–2903.

23

Bai, P.; Zhu, G.; Jing, Q. S.; Yang, J.; Chen, J.; Su, Y. J.; Ma, J. S.; Zhang, G.; Wang, Z. L. Membrane-based selfpowered triboelectric sensors for pressure change detection and its uses in security surveillance and healthcare monitoring. Adv. Funct. Mater. 2014, 24, 5807–5813.

24

Mandal, D.; Yoon, S.; Kim, K. J. Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor. Macromol. Rapid Commun. 2011, 32, 831–837.

25

Sharma, T.; Je, S. S.; Gill, B.; Zhang, J. X. J. Patterning piezoelectric thin film PVDF–TrFE based pressure sensor for catheter application. Sensor. Actuat. A: Phys. 2012, 177, 87–92.

26

Tamang, A.; Ghosh, S. K.; Garain, S.; Alam, M. M.; Haeberle, J.; Henkel, K.; Schmeisser, D.; Mandal, D. DNA-assisted β-phase nucleation and alignment of molecular dipoles in PVDF film: A realization of self-poled bioinspired flexible polymer nanogenerator for portable electronic devices. ACS Appl. Mater. Interfaces, 2015, 7, 16143–16147.

27

Cho, Y.; Park, J. B.; Kim, B. S.; Lee, J.; Hong, W. K.; Park, I. K.; Jang, J. E.; Sohn, J. I.; Cha, S.; Kim, J. M. Enhanced energy harvesting based on surface morphology engineering of P(VDF-TrFE) film. Nano Energy 2015, 16, 524–532.

28

Li, M. Y.; Katsouras, I.; Piliego, C.; Glasser, G.; Lieberwirth, I.; Blom, P. W. M.; de Leeuw, D. M. Controlling the microstructure of poly(vinylidene-fluoride) (PVDF) thin films for microelectronics. J. Mater. Chem. C 2013, 1, 7695–7702.

29

García-Gutiérrez, M. C.; Linares, A.; Martín-Fabiani, I.; Hernández, J. J.; Soccio, M.; Rueda, D. R.; Ezquerra, T. A.; Reynolds, M. Understanding crystallization features of P(VDF-TrFE) copolymers under confinement to optimize ferroelectricity in nanostructures. Nanoscale 2013, 5, 6006–6012.

30

Li, X.; Lim, Y. F.; Yao, K.; Tay, F. E. H.; Seah, K. H. P(VDF-TrFE) ferroelectric nanotube array for high energy density capacitor applications. Phys. Chem. Chem. Phys. 2013, 15, 515–520.

31

Pi, Z. Y.; Zhang, J. W.; Wen, C. Y.; Zhang, Z. B.; Wu, D. P. Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film. Nano Energy 2014, 7, 33–41.

32

Kusuma, D. Y.; Nguyen, C. A.; Lee, P. S. Enhanced ferroelectric switching characteristics of P(VDF-TrFE) for organic memory devices. J. Phys. Chem. B 2010, 114, 13289–13293.

33

Whiter, R. A.; Narayan, V.; Kar-Narayan, S. A scalable nanogenerator based on self-poled piezoelectric polymer nanowires with high energy conversion efficiency. Adv. Energy Mater. 2014, 4, 1400519.

34

Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Directcurrent nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.

35

Chang, C.; Tran, V. H.; Wang, J. B.; Fuh, Y. K.; Lin, L. W. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726–731.

36

Nguyen, V.; Zhu, R.; Yang, R. S. Environmental effects on nanogenerators. Nano Energy 2015, 14, 49–61.

37

Parida, K.; Bhavanasi, V.; Kumar, V.; Wang, J. X.; Lee, P. S. Fast charging self-powered electric double layer capacitor. J. Power Sources 2017, 342, 70–78.

38

Zhang, A. J.; Bai, H.; Li, L. Breath figure: A natureinspired preparation method for ordered porous films. Chem. Rev. 2015, 115, 9801–9868.

39

Venault, A.; Chang, Y.; Wang, D. M.; Bouyer, D. A review on polymeric membranes and hydrogels prepared by vaporinduced phase separation process. Polym. Rev. 2013, 53, 568–626.

40

Jana, S.; Garain, S.; Sen, S.; Mandal, D. The influence of hydrogen bonding on the dielectric constant and the piezoelectric energy harvesting performance of hydrated metal salt mediated PVDF films. Phys. Chem. Chem. Phys. 2015, 17, 17429–17436.

41

Karan, S. K.; Bera, R.; Paria, S.; Das, A. K.; Maiti, S.; Maitra, A.; Khatua, B. B. An approach to design highly durable piezoelectric nanogenerator based on self-poled PVDF/AlO-rGO flexible nanocomposite with high power density and energy conversion efficiency. Adv. Energy Mater. 2016, 6, 1601016.

42

Chen, S. T.; Li, X.; Yao, K.; Tay, F. E. H.; Kumar, A.; Zeng, K. Y. Self-polarized ferroelectric PVDF homopolymer ultra-thin films derived from Langmuir–Blodgett deposition. Polymer 2012, 53, 1404–1408.

43

Garain, S.; Sinha, T. K.; Adhikary, P.; Henkel, K.; Sen, S.; Ram, S.; Sinha, C.; Schmeißer, D.; Mandal, D. Self-poled transparent and flexible UV light-emitting cerium complex–PVDF composite: A high-performance nanogenerator. ACS Appl. Mater. Interfaces 2015, 7, 1298–1307.

44

Pardo, L.; García, A.; Brebøl, K.; Piazza, D.; Galassi, C. Key issues in the characterization of porous PZT based ceramics with morphotropic phase boundary composition. J. Electroceram. 2007, 19, 413–418.

45

Wang, Z. L.; Lin, L.; Chen, J.; Niu, S.; Zi, Y. TriboelectricNanogenerators; Springer International Publishing:Switzerland, 2016.

46

Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and selfpowered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

47

Lee, K. Y.; Gupta, M. K.; Kim, S. W. Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy 2015, 14, 139–160.

48

Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

49

Lee, J. H.; Hinchet, R.; Kim, T. Y.; Ryu, H.; Seung, W.; Yoon, H. J.; Kim, S. W. Control of skin potential by triboelectrification with ferroelectric polymers. Adv. Mater. 2015, 27, 5553–5558.

50

Fan, F. R.; Tang, W.; Wang, Z. L. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 2016, 28, 4283–4305.

51

Chun, J.; Kim, J. W.; Jung, W. S.; Kang, C. Y.; Kim, S. W.; Wang, Z. L.; Baik, J. M. Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ. Sci. 2015, 8, 3006–3012.

52

Wang, S. H.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462.

53

Seol, M. L.; Lee, S. H.; Han, J. W.; Kim, D.; Cho, G. H.; Choi, Y. K. Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures. Nano Energy 2015, 17, 63–71.

54

Bai, P.; Zhu, G.; Zhou, Y. S.; Wang, S. H.; Ma, J. S.; Zhang, G.; Wang, Z. L. Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators. Nano Res. 2014, 7, 990–997.

Nano Research
Pages 3557-3570
Cite this article:
Parida K, Bhavanasi V, Kumar V, et al. Self-powered pressure sensor for ultra-wide range pressure detection. Nano Research, 2017, 10(10): 3557-3570. https://doi.org/10.1007/s12274-017-1567-6
Metrics & Citations  
Article History
Copyright
Return