Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
NaFeTiO4 nanorods of high yields (with diameters in the range of 30–50 nm and lengths of up to 1–5 μm) were synthesized by a facile sol–gel method and were utilized as an anode material for sodium-ion batteries for the first time. The obtained NaFeTiO4 nanorods exhibit a high initial discharge capacity of 294 mA·h·g-1 at 0.2 C (1 C = 177 mA·g–1), and remain at 115 mA·h·g–1 after 50 cycles. Furthermore, multi-walled carbon nanotubes (MWCNTs) were mechanically milled with the pristine material to obtain NaFeTiO4/MWCNTs. The NaFeTiO4/ MWCNTs electrode exhibits a significantly improved electrochemical performance with a stable discharge capacity of 150 mA·h·g–1 at 0.2 C after 50 cycles, and remains at 125 mA·h·g–1 at 0.5 C after 420 cycles. The NaFeTiO4/MWCNTs//Na3V2(PO4)3/C full cell was assembled for the first time; it displays a discharge capacity of 70 mA·h·g-1 after 50 cycles at 0.05 C, indicating its excellent performances. X-ray photoelectron spectroscopy, ex situ X-ray diffraction, and Raman measurements were performed to investigate the initial electrochemical mechanisms of the obtained NaFeTiO4/MWCNTs.
Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Eng. Mater. 2012, 2, 710–721.
Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.
Ellis, B. L.; Nazar, L. F. Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 2012, 16, 168–177.
later, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.
Thomas, P.; Ghanbaja, J.; Billaud, D. Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4-ethylene carbonate electrolyte. Electrochim. Acta 1999, 45, 423–430.
Asher, R. C.; Wilson, S. A. Lamellar compound of sodium with graphite. Nature 1958, 181, 409–410.
Wu, L.; Hu, X. H.; Qian, J. F.; Pei, F.; Wu, F. Y.; Mao, R. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. A Sn-SnS-C nanocomposite as anode host materials for Na-ion batteries. J. Mater. Chem. A 2013, 1, 7181–7184.
Darwiche, A.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Facile synthesis and long cycle life of SnSb as negative electrode material for Na-ion batteries. Electrochem. Commun. 2013, 32, 18–21.
Wang, J. W.; Liu, X. H.; Mao, S. X.; Huang, J. Y. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 2012, 12, 5897–5902.
Li, S. L.; Li, A. H.; Zhang, R. R.; He, Y. Y.; Zhai, Y. J.; Xu, L. Q. Hierarchical porous metal ferrite ball-in-ball hollow spheres: General synthesis, formation mechanism, and high performance as anode materials for Li-ion batteries. Nano Res. 2014, 7, 1116–1127.
Li, A. H.; Xu, L. Q.; Li, S. L.; He, Y. Y.; Zhang, R. R.; Zhai, Y. J. One-dimensional manganese borate hydroxide nanorods and the corresponding manganese oxyborate nanorods as promising anodes for lithium ion batteries. Nano Res. 2015, 8, 554–565.
Obrovac, M. N.; Christensen, L.; Le, D. B.; Dahn, J. R. Alloy design for lithium-ion battery anodes. J. Electrochem. Soc. 2007, 154, A849–A855.
Bi, Z. H.; Paranthaman, M. P.; Menchhofer, P. A.; Dehoff, R. R.; Bridges, C. A.; Chi, M. F.; Guo, B. K.; Sun, X. G.; Dai, S. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. J. Power Sources 2013, 222, 461–466.
Zhang, H.; Gao, X. P.; Li, G. R.; Yan, T. Y.; Zhu, H. Y. Electrochemical lithium storage of sodium titanate nanotubes and nanorods. Electrochim. Acta 2008, 53, 7061–7068.
Sun, Y.; Zhao, L.; Pan, H. L.; Lu, X.; Gu, L.; Hu, Y. S.; Li, H.; Armand, M.; Ikuhara, Y.; Chen, L. Q. et al. Direct atomicscale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 2013, 4, 1870.
Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J. M.; Palacín, M. R. Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem. Mater. 2011, 23, 4109–4111.
Rudola, A.; Saravanan, K.; Mason, C. W.; Balaya, P. Na2Ti3O7: An intercalation based anode for sodium-ion battery applications. J. Mater. Chem. A 2013, 1, 2653–2662.
Wang, W.; Yu, C. J.; Lin, Z. S.; Hou, J. G.; Zhu, H. M.; Jiao, S. Q. Microspheric Na2Ti3O7 consisting of tiny nanotubes: An anode material for sodium-ion batteries with ultrafast charge–discharge rates. Nanoscale 2013, 5, 594–599.
Yan, Z. C.; Liu, L.; Shu, H. B.; Yang, X. K.; Wang, H.; Tan, J. L.; Zhou, Q.; Huang, Z. F.; Wang, X. Y. A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries. J. Power Sources 2015, 274, 8–14.
Rudola, A.; Saravanan, K.; Devaraj, S.; Gong, H.; Balaya, P. Na2Ti6O13: A potential anode for grid-storage sodium-ion batteries. Chem. Commun. 2013, 49, 7451–7453.
Kim, D.; Lee, E.; Slater, M.; Lu, W. Q.; Rood, S.; Johnson, C. S. Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application. Electrochem. Commun. 2012, 18, 66–69.
Yuan, D. D.; Hu, X. H.; Qian, J. F.; Pei, F.; Wu, F. Y.; Mao, R. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 cathode material with high-capacity for sodium-ion battery. Electrochim. Acta 2014, 116, 300–305.
Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512–517.
Wang, J.; Qiu, B.; He, X.; Risthaus, T.; Liu, H. D.; Stan, M. C.; Schulze, S.; Xia, Y. G.; Liu, Z. P.; Winter, M. et al. Low-cost orthorhombic Nax[FeTi]O4 (x = 1 and 4/3) compounds as anode materials for sodium-ion batteries. Chem. Mater. 2015, 27, 4374–4379.
Duan, W. C.; Zhu, Z. Q.; Li, H.; Hu, Z.; Zhang, K.; Cheng, F. Y.; Chen, J. Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries. J. Mater. Chem. A 2014, 2, 8668–8675.
Sharma, N.; Shaju, K. M.; Rao, G. V. S.; Chowdari, B. V. R. Iron–tin oxides with CaFe2O4 structure as anodes for Li-ion batteries. J. Power Sources 2003, 124, 204–212.
Sharma, N.; Shaju, K. M.; Rao, G. V. S.; Chowdari, B. V. R. Mixed oxides Ca2Fe2O5 and Ca2Co2O5 as anode materials for Li-ion batteries. Electrochim. Acta 2004, 49, 1035–1043.
Archaimbault, F.; Odier, P.; Choisnet, J. Non-stoichiometric compounds with a defect CaFe2O4 structure: The mixed ferrites Ca1-x2Fe2-xSnxO4 and Ca1-(x+y)2LiyFe2-xO4. Solid State Ion. 1988, 28-30, 1357–1363.
Guo, S. H.; Yu, H. J.; Liu, P.; Ren, Y.; Zhang, T.; Chen, M. W.; Ishida, M.; Zhou, H. S. High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2. Energy Environ. Sci. 2015, 8, 1237–1244.
Li, H.; Fei, H. L.; Liu, X.; Yang, J.; Wei, M. D. In situ synthesis of Na2Ti7O15 nanotubes on a Ti net substrate as a high performance anode for Na-ion batteries. Chem. Commun. 2015, 51, 9298–9300.
Li, H. S.; Peng, L. L.; Zhu, Y.; Chen, D. H.; Zhang, X. G.; Yu, G. H. An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials. Energy Environ. Sci. 2016, 9, 3399–3405.
Xu, Y.; Lotfabad, E. M.; Wang, H. L.; Farbod, B.; Xu, Z. W.; Kohandehghan, A.; Mitlin, D. Nanocrystalline anatase TiO2: A new anode material for rechargeable sodium ion batteries. Chem. Commun. 2013, 49, 8973–8975.
Wu, L. M.; Bresser, D.; Buchholz, D.; Giffin, G. A.; Castro, C. R.; Ochel, A.; Passerini, S. Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 2015, 5, 1401142.
Luo, J. S.; Xia, X. H.; Luo, Y. S.; Guan, C.; Liu, J. L.; Qi, X. Y.; Ng, C. F.; Yu, T.; Zhang, H.; Fan, H. J. Rationally designed hierarchical TiO2@Fe2O3 hollow nanostructures for improved lithium ion storage. Adv. Energy Mater. 2013, 3, 737–743.
Na, Z. L.; Huang, G.; Liang, F.; Yin, D. M.; Wang, L. M. A core–shell Fe/Fe2O3 nanowire as a high-performance anode material for lithium-ion batteries. Chem. —Eur. J. 2016, 22, 12081–12087.
Fu, Y. Q.; Wei, Q. L.; Wang, X. Y.; Zhang, G. X.; Shu, H. B.; Yang, X. K.; Tavares, A. C.; Sun, S. H. A facile synthesis of Fe3O4 nanoparticles/graphene for high-performance lithium/sodium-ion batteries. RSC Adv. 2016, 6, 16624–16633.
Shen, L. F.; Uchaker, E.; Zhang, X. G.; Cao, G. Z. Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv. Mater. 2012, 24, 6502–6506.
Zhang, N.; Han, X. P.; Liu, Y. C.; Hu, X. F.; Zhao, Q.; Chen, J. 3D porous γ-Fe2O3@C nanocomposite as highperformance anode material of Na-ion batteries. Adv. Energy Mater. 2015, 5, 1401123.
Sheng, J. Z.; Zang, H.; Tang, C. J.; An, Q. Y.; Wei, Q. L.; Zhang, G. B.; Chen, L. N.; Peng, C.; Mai, L. Q. Graphene wrapped NASICON-type Fe2(MoO4)3 nanoparticles as a ultra-high rate cathode for sodium ion batteries. Nano Energy 2016, 24, 130–138.
Zang, Y. P.; Zhang, H. M.; Zhang, X.; Liu, R. R.; Liu, S. W.; Wang, G. Z.; Zhang, Y. X.; Zhao, H. J. Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Nano Res. 2016, 9, 2123–2137.
Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449.
El Mendili, Y.; Bardeau, J. F.; Randrianantoandro, N.; Gourbil, A.; Greneche, J. M.; Mercier, A. M.; Grasset, F. New evidences of in situ laser irradiation effects on γ-Fe2O3 nanoparticles: A Raman spectroscopic study. J. Raman Spectrosc. 2011, 42, 239–242.
Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithiumsulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 3907–3911.
Okpalugo, T. I. T.; Papakonstantinou, P.; Murphy, H.; McLaughlin, J.; Brown, N. M. D. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 2005, 43, 153–161.
Xiao, P.; Zheng, S. B.; You, J. L.; Jiang, G. C.; Chen, H.; Zeng, H. Structure and Raman spectra of titanium oxides. Spectrosc. Spect. Anal. 2007, 27, 936–939.
Jang, J.; Yoon, H. Fabrication of magnetic carbon nanotubes using a metal-impregnated polymer precursor. Adv. Mater. 2003, 15, 2088–2091.