Graphical Abstract

NaFeTiO4 nanorods of high yields (with diameters in the range of 30–50 nm and lengths of up to 1–5 μm) were synthesized by a facile sol–gel method and were utilized as an anode material for sodium-ion batteries for the first time. The obtained NaFeTiO4 nanorods exhibit a high initial discharge capacity of 294 mA·h·g-1 at 0.2 C (1 C = 177 mA·g–1), and remain at 115 mA·h·g–1 after 50 cycles. Furthermore, multi-walled carbon nanotubes (MWCNTs) were mechanically milled with the pristine material to obtain NaFeTiO4/MWCNTs. The NaFeTiO4/ MWCNTs electrode exhibits a significantly improved electrochemical performance with a stable discharge capacity of 150 mA·h·g–1 at 0.2 C after 50 cycles, and remains at 125 mA·h·g–1 at 0.5 C after 420 cycles. The NaFeTiO4/MWCNTs//Na3V2(PO4)3/C full cell was assembled for the first time; it displays a discharge capacity of 70 mA·h·g-1 after 50 cycles at 0.05 C, indicating its excellent performances. X-ray photoelectron spectroscopy, ex situ X-ray diffraction, and Raman measurements were performed to investigate the initial electrochemical mechanisms of the obtained NaFeTiO4/MWCNTs.
Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Eng. Mater. 2012, 2, 710–721.
Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.
Ellis, B. L.; Nazar, L. F. Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 2012, 16, 168–177.
later, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.
Thomas, P.; Ghanbaja, J.; Billaud, D. Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4-ethylene carbonate electrolyte. Electrochim. Acta 1999, 45, 423–430.
Asher, R. C.; Wilson, S. A. Lamellar compound of sodium with graphite. Nature 1958, 181, 409–410.
Wu, L.; Hu, X. H.; Qian, J. F.; Pei, F.; Wu, F. Y.; Mao, R. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. A Sn-SnS-C nanocomposite as anode host materials for Na-ion batteries. J. Mater. Chem. A 2013, 1, 7181–7184.
Darwiche, A.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Facile synthesis and long cycle life of SnSb as negative electrode material for Na-ion batteries. Electrochem. Commun. 2013, 32, 18–21.
Wang, J. W.; Liu, X. H.; Mao, S. X.; Huang, J. Y. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 2012, 12, 5897–5902.
Li, S. L.; Li, A. H.; Zhang, R. R.; He, Y. Y.; Zhai, Y. J.; Xu, L. Q. Hierarchical porous metal ferrite ball-in-ball hollow spheres: General synthesis, formation mechanism, and high performance as anode materials for Li-ion batteries. Nano Res. 2014, 7, 1116–1127.
Li, A. H.; Xu, L. Q.; Li, S. L.; He, Y. Y.; Zhang, R. R.; Zhai, Y. J. One-dimensional manganese borate hydroxide nanorods and the corresponding manganese oxyborate nanorods as promising anodes for lithium ion batteries. Nano Res. 2015, 8, 554–565.
Obrovac, M. N.; Christensen, L.; Le, D. B.; Dahn, J. R. Alloy design for lithium-ion battery anodes. J. Electrochem. Soc. 2007, 154, A849–A855.
Bi, Z. H.; Paranthaman, M. P.; Menchhofer, P. A.; Dehoff, R. R.; Bridges, C. A.; Chi, M. F.; Guo, B. K.; Sun, X. G.; Dai, S. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. J. Power Sources 2013, 222, 461–466.
Zhang, H.; Gao, X. P.; Li, G. R.; Yan, T. Y.; Zhu, H. Y. Electrochemical lithium storage of sodium titanate nanotubes and nanorods. Electrochim. Acta 2008, 53, 7061–7068.
Sun, Y.; Zhao, L.; Pan, H. L.; Lu, X.; Gu, L.; Hu, Y. S.; Li, H.; Armand, M.; Ikuhara, Y.; Chen, L. Q. et al. Direct atomicscale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 2013, 4, 1870.
Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J. M.; Palacín, M. R. Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem. Mater. 2011, 23, 4109–4111.
Rudola, A.; Saravanan, K.; Mason, C. W.; Balaya, P. Na2Ti3O7: An intercalation based anode for sodium-ion battery applications. J. Mater. Chem. A 2013, 1, 2653–2662.
Wang, W.; Yu, C. J.; Lin, Z. S.; Hou, J. G.; Zhu, H. M.; Jiao, S. Q. Microspheric Na2Ti3O7 consisting of tiny nanotubes: An anode material for sodium-ion batteries with ultrafast charge–discharge rates. Nanoscale 2013, 5, 594–599.
Yan, Z. C.; Liu, L.; Shu, H. B.; Yang, X. K.; Wang, H.; Tan, J. L.; Zhou, Q.; Huang, Z. F.; Wang, X. Y. A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries. J. Power Sources 2015, 274, 8–14.
Rudola, A.; Saravanan, K.; Devaraj, S.; Gong, H.; Balaya, P. Na2Ti6O13: A potential anode for grid-storage sodium-ion batteries. Chem. Commun. 2013, 49, 7451–7453.
Kim, D.; Lee, E.; Slater, M.; Lu, W. Q.; Rood, S.; Johnson, C. S. Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application. Electrochem. Commun. 2012, 18, 66–69.
Yuan, D. D.; Hu, X. H.; Qian, J. F.; Pei, F.; Wu, F. Y.; Mao, R. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 cathode material with high-capacity for sodium-ion battery. Electrochim. Acta 2014, 116, 300–305.
Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512–517.
Wang, J.; Qiu, B.; He, X.; Risthaus, T.; Liu, H. D.; Stan, M. C.; Schulze, S.; Xia, Y. G.; Liu, Z. P.; Winter, M. et al. Low-cost orthorhombic Nax[FeTi]O4 (x = 1 and 4/3) compounds as anode materials for sodium-ion batteries. Chem. Mater. 2015, 27, 4374–4379.
Duan, W. C.; Zhu, Z. Q.; Li, H.; Hu, Z.; Zhang, K.; Cheng, F. Y.; Chen, J. Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries. J. Mater. Chem. A 2014, 2, 8668–8675.
Sharma, N.; Shaju, K. M.; Rao, G. V. S.; Chowdari, B. V. R. Iron–tin oxides with CaFe2O4 structure as anodes for Li-ion batteries. J. Power Sources 2003, 124, 204–212.
Sharma, N.; Shaju, K. M.; Rao, G. V. S.; Chowdari, B. V. R. Mixed oxides Ca2Fe2O5 and Ca2Co2O5 as anode materials for Li-ion batteries. Electrochim. Acta 2004, 49, 1035–1043.
Archaimbault, F.; Odier, P.; Choisnet, J. Non-stoichiometric compounds with a defect CaFe2O4 structure: The mixed ferrites Ca1-x2Fe2-xSnxO4 and Ca1-(x+y)2LiyFe2-xO4. Solid State Ion. 1988, 28-30, 1357–1363.
Guo, S. H.; Yu, H. J.; Liu, P.; Ren, Y.; Zhang, T.; Chen, M. W.; Ishida, M.; Zhou, H. S. High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2. Energy Environ. Sci. 2015, 8, 1237–1244.
Li, H.; Fei, H. L.; Liu, X.; Yang, J.; Wei, M. D. In situ synthesis of Na2Ti7O15 nanotubes on a Ti net substrate as a high performance anode for Na-ion batteries. Chem. Commun. 2015, 51, 9298–9300.
Li, H. S.; Peng, L. L.; Zhu, Y.; Chen, D. H.; Zhang, X. G.; Yu, G. H. An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials. Energy Environ. Sci. 2016, 9, 3399–3405.
Xu, Y.; Lotfabad, E. M.; Wang, H. L.; Farbod, B.; Xu, Z. W.; Kohandehghan, A.; Mitlin, D. Nanocrystalline anatase TiO2: A new anode material for rechargeable sodium ion batteries. Chem. Commun. 2013, 49, 8973–8975.
Wu, L. M.; Bresser, D.; Buchholz, D.; Giffin, G. A.; Castro, C. R.; Ochel, A.; Passerini, S. Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 2015, 5, 1401142.
Luo, J. S.; Xia, X. H.; Luo, Y. S.; Guan, C.; Liu, J. L.; Qi, X. Y.; Ng, C. F.; Yu, T.; Zhang, H.; Fan, H. J. Rationally designed hierarchical TiO2@Fe2O3 hollow nanostructures for improved lithium ion storage. Adv. Energy Mater. 2013, 3, 737–743.
Na, Z. L.; Huang, G.; Liang, F.; Yin, D. M.; Wang, L. M. A core–shell Fe/Fe2O3 nanowire as a high-performance anode material for lithium-ion batteries. Chem. —Eur. J. 2016, 22, 12081–12087.
Fu, Y. Q.; Wei, Q. L.; Wang, X. Y.; Zhang, G. X.; Shu, H. B.; Yang, X. K.; Tavares, A. C.; Sun, S. H. A facile synthesis of Fe3O4 nanoparticles/graphene for high-performance lithium/sodium-ion batteries. RSC Adv. 2016, 6, 16624–16633.
Shen, L. F.; Uchaker, E.; Zhang, X. G.; Cao, G. Z. Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv. Mater. 2012, 24, 6502–6506.
Zhang, N.; Han, X. P.; Liu, Y. C.; Hu, X. F.; Zhao, Q.; Chen, J. 3D porous γ-Fe2O3@C nanocomposite as highperformance anode material of Na-ion batteries. Adv. Energy Mater. 2015, 5, 1401123.
Sheng, J. Z.; Zang, H.; Tang, C. J.; An, Q. Y.; Wei, Q. L.; Zhang, G. B.; Chen, L. N.; Peng, C.; Mai, L. Q. Graphene wrapped NASICON-type Fe2(MoO4)3 nanoparticles as a ultra-high rate cathode for sodium ion batteries. Nano Energy 2016, 24, 130–138.
Zang, Y. P.; Zhang, H. M.; Zhang, X.; Liu, R. R.; Liu, S. W.; Wang, G. Z.; Zhang, Y. X.; Zhao, H. J. Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Nano Res. 2016, 9, 2123–2137.
Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449.
El Mendili, Y.; Bardeau, J. F.; Randrianantoandro, N.; Gourbil, A.; Greneche, J. M.; Mercier, A. M.; Grasset, F. New evidences of in situ laser irradiation effects on γ-Fe2O3 nanoparticles: A Raman spectroscopic study. J. Raman Spectrosc. 2011, 42, 239–242.
Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithiumsulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 3907–3911.
Okpalugo, T. I. T.; Papakonstantinou, P.; Murphy, H.; McLaughlin, J.; Brown, N. M. D. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 2005, 43, 153–161.
Xiao, P.; Zheng, S. B.; You, J. L.; Jiang, G. C.; Chen, H.; Zeng, H. Structure and Raman spectra of titanium oxides. Spectrosc. Spect. Anal. 2007, 27, 936–939.
Jang, J.; Yoon, H. Fabrication of magnetic carbon nanotubes using a metal-impregnated polymer precursor. Adv. Mater. 2003, 15, 2088–2091.