AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Layer-by-layer assembly of long-afterglow self-supporting thin films with dual-stimuli-responsive phosphorescence and antiforgery applications

Rui Gao1Dongpeng Yan1,2( )David G. Evans1Xue Duan1
State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875China
Show Author Information

Graphical Abstract

Abstract

The assembly of thin films (TFs) having long-lasting luminescence can be expected to play an important role in the development of new-generation smart sensors, anti-counterfeiting materials, and information-encryption systems. However, such films are limited compared with their powder and solution counterparts. In this study, by exploiting the self-organization of phosphors in the two-dimensional (2D) galleries between clay nanosheets, we developed a method for the ordered assembly of long-afterglow TFs by utilizing a hydrogen-bonding layer-by-layer (LBL) process. Compared with the pristine powder, the TFs exhibit high polarization and up-conversion room-temperature phosphorescence (RTP), as well as enhanced quantum yields and luminescence lifetimes, allowing them to be used as room-temperature phosphorescent sensors for humidity and oxygen. Moreover, modified clay-based hybrids with multicolor RTP can serve as anti-counterfeiting marks and triple-mode 2D barcode displays. We anticipate that the LBL assembly process can be extended to the fabrication of other inorganic–organic room-temperature phosphorescent hybrids with smart luminescent sensor and antiforgery applications.

Electronic Supplementary Material

Download File(s)
nr-10-10-3606_ESM.pdf (1.8 MB)

References

1

Chan, J. C. H.; Lam, W. H.; Wong, H. L.; Wong, W. T.; Yam, V. W. W. Tunable photochromism in air-stable, robust dithienylethene-containing phospholes through modifications at the phosphorus center. Angew. Chem., Int. Ed. 2013, 52, 11504–11508.

2

Yoon, J. Encoding optical signals. Angew. Chem., Int. Ed. 2014, 53, 6600–6601.

3

Raymo, F. M.; Tomasulo, M. Electron and energy transfer modulation with photochromic switches. Chem. Soc. Rev. 2005, 34, 327–336.

4

Yan, D. P.; Lu, J.; Ma, J.; Wei, M.; Evans, D. G.; Duan, X. Reversibly thermochromic, fluorescent ultrathin films with a supramolecular architecture. Angew. Chem., Int. Ed. 2011, 50, 720–723.

5

Nakanotani, H.; Higuchi1, T.; Furukawa, T.; Masui, K.; Morimoto, K.; Numata, M.; Tanaka, H.; Sagara, Y.; Yasuda, T.; Adachi, C. High-efficiency organic light-emitting diodes with fluorescent emitters. Nat. Commun. 2014, 5, 4016.

6

Mao, Z.; Yang, Z. Y.; Mu, Y. X.; Zhang, Y.; Wang, Y. F.; Chi, Z. G.; Lo, C. C.; Liu, S. W.; Lien, A.; Xu, J. R. Linearly tunable emission colors obtained from a fluorescent-phosphorescent dual-emission compound by mechanical stimuli. Angew. Chem., Int. Ed. 2015, 54, 6270–6273.

7

Koch, M.; Perumal, K.; Blacque, O.; Garg, J. A.; Saiganesh, R.; Kabilan, S.; Balasubramanian, K. K.; Venkatesan, K. Metalfree triplet phosphors with high emission efficiency and high tunability. Angew. Chem., Int. Ed. 2014, 53, 6378–6382.

8

Xu, S.; Chen, R. F.; Zheng, C.; Huang, W. Excited state modulation for organic afterglow: Materials and applications. Adv. Mater. 2016, 28, 9920–9940.

9

Yang, X. G.; Yan, D. P. Long-afterglow metal–organic frameworks: Reversible guest-induced phosphorescence tunability. Chem. Sci. 2016, 7, 4519–4526.

10

Zhang, G. Q.; Chen, J. B.; Payne, S. J.; Kooi, S. E.; Demas, J. N.; Fraser, C. L. Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence. J. Am. Chem. Soc. 2007, 129, 8942–8943.

11

Yang, Z. Y.; Mao, Z.; Zhang, X. P.; Ou, D. P.; Mu, Y. X.; Zhang, Y.; Zhao, C. Y.; Liu, S. W.; Chi, Z. G.; Xu, J. R. et al. Intermolecular electronic coupling of organic units for efficient persistent room-temperature phosphorescence. Angew. Chem., Int. Ed. 2016, 55, 2181–2185.

12

Jiang, K.; Zhang, L.; Lu, J. F.; Xu, C. X.; Cai, C. Z.; Lin, H. W. Triple-mode emission of carbon dots: Applications for advanced anti-counterfeiting. Angew. Chem., Int. Ed. 2016, 55, 7231–7235.

13

An, Z. F.; Zheng, C.; Tao, Y.; Chen, R. F.; Shi, H. F.; Chen, T.; Wang, Z. X.; Li, H. H.; Deng, R. R.; Liu, X. G. et al. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater. 2015, 14, 685–690.

14

Deng, Y. H.; Zhao, D. X.; Chen, X.; Wang, F.; Song, H.; Shen, D. Z. Long lifetime pure organic phosphorescence based on water soluble carbon dots. Chem. Commun. 2013, 49, 5751–5753.

15

Kwon, M. S.; Lee, D.; Seo, S.; Jung, J.; Kim, J. Tailoring intermolecular interactions for efficient room-temperature phosphorescence from purely organic materials in amorphous polymer matrices. Angew. Chem., Int. Ed. 2014, 53, 11177–11181.

16

Xue, P. C.; Sun, J. B.; Chen, P.; Wang, P. P.; Yao, B. Q.; Gong, P.; Zhang, Z. Q.; Lu, R. Luminescence switching of a persistent room-temperature phosphorescent pure organic molecule in response to external stimuli. Chem. Commun., 2015, 51, 10381–10384.

17

Gong, Y. Y.; Zhao, L. F.; Peng, Q.; Fan, D.; Yuan, W. Z.; Zhang, Y. M.; Tang, B. Z. Crystallization-induced dual emission from metal- and heavy atom-free aromatic acids and esters. Chem. Sci. 2015, 6, 4438–4444.

18

Gao, R.; Yan, D. P. Layered host-guest long-afterglow ultrathin nanosheets: High-efficiency phosphorescence energy transfer at 2D confined interface. Chem. Sci. 2017, 8, 590–599.

19

Chen, H.; Yao, X. Y.; Ma, X.; Tian, H. Amorphous, efficient, room-temperature phosphorescent metal-free polymers and their applications as encryption ink. Adv. Opt. Mater. 2016, 4, 1397–1401.

20

Ghosh, Y.; Mangum, B. D.; Casson, J. L.; Williams, D. J.; Htoon, H.; Hollingsworth, J. A. New insights into the complexities of shell growth and the strong influence of particle volume in nonblinking "Giant" core/shell nanocrystal quantum dots. J. Am. Chem. Soc. 2012, 134, 9634–9643.

21

Höppe, H. A. Recent developments in the field of inorganic phosphors. Angew. Chem., Int. Ed. 2009, 48, 3572–3582.

22

Liu, W.; Fang, Y.; Wei, G. Z.; Teat, S. J.; Xiong, K. C.; Hu, Z. C.; Lustig, W. P.; Li, J. A family of highly efficient CuI-based lighting phosphors prepared by a systematic, bottom-up synthetic approach. J. Am. Chem. Soc. 2015, 137, 9400–9408.

23

Liao, Y. Z.; Strong, V.; Wang, Y.; Li, X. G.; Wang X.; Kaner, R. B. Oligotriphenylene nanofiber sensors for detection of nitro-based explosives. Adv. Funct. Mater. 2012, 22, 726–735.

24

Esser, B.; Swager, T. M. Detection of ethylene gas by fluorescence turn-on of a conjugated polymer. Angew. Chem., Int. Ed. 2010, 49, 8872–8875.

25

Xu, B. W.; Wu, X. F.; Li, H. B.; Tong, H.; Wang, L. X. Selective detection of TNT and picric acid by conjugated polymer film sensors with donor-acceptor architecture. Macromolecules 2011, 44, 5089–5092.

26

Zheng, Y. J.; Orbulescu, J.; Ji, X. J.; Andreopoulos, F. M.; Pham, S. M.; Leblanc, R. M. Development of fluorescent film sensors for the detection of divalent copper. J. Am. Chem. Soc. 2003, 125, 2680–2686.

27

Gole, A.; Jana, N. R.; Selvan, S. T.; Ying, J. Y. Langmuir–Blodgett thin films of quantum dots: Synthesis, surface modification, and fluorescence resonance energy transfer (FRET) studies. Langmuir 2008, 24, 8181–8186.

28

Li, X. Y.; Zhou, Y. L.; Zheng, Z. Z.; Yue, X. L.; Dai, Z. F.; Liu, S. Q.; Tang, Z. Y. Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase. Langmuir 2009, 25, 6580–6586.

29

Ma, H. Y.; Gao, R.; Yan, D. P.; Zhao, J. W.; Wei, M. Organic–inorganic hybrid fluorescent ultrathin films and their sensor application for nitroaromatic explosives. J. Mater. Chem. C 2013, 1, 4128–4137.

30

Yan, D. P.; Lu, J.; Wei, M.; Han, J. B.; Ma, J.; Li, F.; Evans, D. G.; Duan, X. Ordered poly(p-phenylene)/layered double hydroxide ultrathin films with blue luminescence by layer-bylayer assembly. Angew. Chem., Int. Ed. 2009, 48, 3073–3076.

31

Lee, D.; Bolton, O.; Kim, B. C.; Youk, J. H.; Takayama, S.; Kim, J. Room temperature phosphorescence of metal-free organic materials in amorphous polymer matrices. J. Am. Chem. Soc. 2013, 135, 6325–6329.

32

Kabe, R.; Notsuka, N.; Yoshida, K.; Adachi, C. Afterglow organic light-emitting diode. Adv. Mater. 2016, 28, 655–660.

33

Bolton, O.; Lee, K.; Kim, H. J.; Lin, K. Y.; Kim, J. Activating efficient phosphorescence from purely organic materials by crystal design. Nat. Chem. 2011, 3, 205–210.

34

Bolton, O.; Lee, D.; Jung, J.; Kim, J. Tuning the photophysical properties of metal-free room temperature organic phosphors via compositional variations in bromobenzaldehyde/dibromobenzene mixed crystals. Chem. Mater. 2014, 26, 6644–6649.

35

Gursky, J. A.; Blough, S. D.; Luna, C.; Gomez, C.; Luevano, A. N.; Gardner, E. A. Particle-particle interactions between layered double hydroxide nanoparticles. J. Am. Chem. Soc. 2006, 128, 8376–8377.

36

Hagrman, P. J.; Hagrman, D.; Zubieta, J. Organic–inorganic hybrid materials: From "simple" coordination polymers to organodiamine-templated molybdenum oxides. Angew. Chem., Int. Ed. 1999, 38, 2638–2684.

37

Xu, Z.; Sun, H. Y.; Zhao, X. L.; Gao, C. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 2013, 25, 188–193.

38

Cong, H. P.; Wang, P.; Yu, S. H. Stretchable and selfhealing graphene oxide-polymer composite hydrogels: A dual-network design. Chem. Mater. 2013, 25, 3357–3362.

39

Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Wei, F. Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides-properties, synthesis, and applications. Adv. Funct. Mater. 2012, 22, 675–694.

40

Ikeda, M.; Yoshii, T.; Matsui, T.; Tanida, T.; Komatsu, H.; Hamachi, I. Montmorillonite-supramolecular hydrogel hybrid for fluorocolorimetric sensing of polyamines. J. Am. Chem. Soc. 2011, 133, 1670–1673.

41

Cheng, Q. F.; Wu, M. X.; Li, M. Z.; Jiang, L.; Tang, Z. Y. Ultratough artificial nacre based on conjugated cross-linked graphene oxide. Angew. Chem., Int. Ed. 2013, 52, 3750–3755.

42

Podsiadlo, P.; Kaushik, A. K.; Arruda, E. M.; Waas, A. M.; Shim, B. S.; Xu, J.; Nandivada, H.; Pumplin, B. G.; Lahann, J.; Ramamoorthy, A. et al. Ultrastrong and stiff layered polymer nanocomposites. Science 2007, 318, 80–83.

43

Carja, G.; Grosu, E. F.; Petrarean, C.; Nichita, N. Selfassemblies of plasmonic gold/layered double hydroxides with highly efficient antiviral effect against the hepatitis B virus. Nano Res. 2015, 8, 3512–3523.

44

Fogg, A. M.; Green, V. M.; Harvey, H. G.; O'Hare, D. New separation science using shape-selective ion exchange intercalation chemistry. Adv. Mater. 1999, 11, 1466–1469.

45

Ma, R. Z.; Takada, K.; Fukuda, K.; Iyi, N.; Bando, Y.; Sasaki, T. Topochemical synthesis of monometallic (Co2+-Co3+) layered double hydroxide and its exfoliation into positively charged Co(OH)2 nanosheets. Angew. Chem., Int. Ed. 2008, 47, 86–89.

46

Wang, Q.; O'Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2002, 112, 4124–4155.

47

Li, Z. X.; Liang, R. Z.; Xu, S. M.; Liu W. D.; Yan, D. P.; Wei, M.; Evans, D. G.; Duan, X. Multi-dimensional, lightcontrolled switch of fluorescence resonance energy transfer based on orderly assembly of 0D dye@micro-micelles and 2D ultrathin-layered nanosheets. Nano Res. 2016, 9, 3828–3838.

48

Yan, D. P.; Lu, J.; Ma, J.; Qin, S. H.; Wei, M.; Evans, D. G.; Duan, X. Layered host–guest materials with reversible piezochromic luminescence. Angew. Chem., Int. Ed. 2011, 50, 7037–7040.

49

Tian, R.; Zhang, S. T.; Li, M. W.; Zhou, Y. Q.; Lu, B.; Yan, D. P.; Wei, M.; Evans, D. G.; Duan, X. Localization of Au nanoclusters on layered double hydroxides nanosheets: Confinement-induced emission enhancement and temperature-responsive luminescence. Adv. Funct. Mater. 2015, 25, 5006–5015.

50

Yan, D. P.; Lu, J.; Wei, M.; Qin, S. H.; Chen, L.; Zhang, S. T.; Evans, D. G.; Duan, X. Heterogeneous transparent ultrathin films with tunable-color luminescence based on the assembly of photoactive organic molecules and layered double hydroxides. Adv. Funct. Mater. 2011, 21, 2497–2505.

51

Chen, J.; Hurtubise, R. J. Infrared study of the interactions of moisture with filter paper and the moisture quenching of solid-matrix room temperature phosphorescence. Anal. Chim. Acta 1996, 324, 61–68.

52

Citta, L. A.; Hurtubise, R. J. The effects of moisture and gases on the room-temperature fluorescence and phosphorescence of model aromatic compounds adsorbed on filter paper. Appl. Spectrosc. 1991, 45, 1547–1552.

53

Gao, R.; Cao, D.; Guan, Y.; Yan, D. P. Fast and reversible humidity-responsive luminescent thin films. Ind. Eng. Chem. Res. 2016, 55, 125–132.

54

Li, L.; Ma, R. Z.; Ebina, Y.; Iyi, N.; Sasaki, T. Positively charged nanosheets derived via total delamination of layered double hydroxides. Chem. Mater. 2005, 17, 4386–4391.

55

Dou, Y. B.; Pan, T.; Xu, S. M.; Yan, H.; Han, J. B.; Wei, M.; Evans, D. G.; Duan, X. Transparent, ultrahigh-gas-barrier films with a brick-mortar-sand structure. Angew. Chem., Int. Ed. 2015, 54, 9673–9678.

Nano Research
Pages 3606-3617
Cite this article:
Gao R, Yan D, Evans DG, et al. Layer-by-layer assembly of long-afterglow self-supporting thin films with dual-stimuli-responsive phosphorescence and antiforgery applications. Nano Research, 2017, 10(10): 3606-3617. https://doi.org/10.1007/s12274-017-1571-x

696

Views

146

Crossref

N/A

Web of Science

147

Scopus

19

CSCD

Altmetrics

Received: 15 December 2016
Revised: 25 February 2017
Accepted: 04 March 2017
Published: 04 July 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return