Graphical Abstract

Bismuth oxides are important battery materials owing to their ability to electrochemically react and alloy with Li, which results in a high capacity level, which substantially exceeds that of graphite anodes. However, this high Li-storage capability is often compromised by the poor electrochemical cyclability and rate capability of bismuth oxides. To address these challenges, in this study, we design a hybrid architecture composed of reduced graphene oxide (rGO) nanosheets decorated with ultrafine Bi2O2.33 nanodots (denoted as Bi2O2.33/rGO), based on the selective and controlled hydrolysis of a Bi precursor on graphene oxide and subsequent crystallization via solvothermal treatment. Because of its high conductivity, large accessible area, and inherent flexibility, the Bi2O2.33/rGO hybrid exhibits stable and robust Li storage (346 mA·h·g-1 over 600 cycles at 10 C), significantly outperforming previously reported Bi-based materials. This superb performance indicates that decorating rGO nanosheets with ultrafine nanodots may introduce new possibilities for the development of stable and robust metal-oxide electrodes.
Obrovac, M. N.; Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 2014, 114, 11444-11502.
Li, Y. D.; Wang, J. W.; Deng, Z. X.; Wu, Y. Y.; Sun, X. M.; Yu, D. P.; Yang, P. D. Bismuth nanotubes: A rational low- temperature synthetic route. J. Am. Chem. Soc. 2001, 123, 9904-9905.
Park, C. M.; Yoon, S.; Lee, S. I.; Sohn, H. J. Enhanced electrochemical properties of nanostructured bismuth-based composites for rechargeable lithium batteries. J. Power Sources 2009, 186, 206-210.
Jung, H.; Park, C. M.; Sohn, H. J. Bismuth sulfide and its carbon nanocomposite for rechargeable lithium-ion batteries. Electrochim. Acta 2011, 56, 2135-2139.
Chen, C. J.; Hu, P.; Hu, X. L.; Mei, Y. N.; Huang, Y. H. Bismuth oxyiodide nanosheets: A novel high-energy anode material for lithium-ion batteries. Chem. Commun. 2015, 51, 2798-2801.
Sun, C. F.; Hu, J. K.; Wang, P.; Cheng, X. Y.; Lee, S. B.; Wang, Y. H. Li3PO4 matrix enables a long cycle life and high energy efficiency bismuth-based battery. Nano Lett. 2016, 16, 5875-5882.
Zhao, Y.; Gao, D. L.; Ni, J. F.; Gao, L. J.; Yang, J.; Li, Y. One-pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability. Nano Res. 2014, 7, 765-773.
Ni, J. F.; Zhao, Y.; Liu, T. T.; Zheng, H. H.; Gao, L. J.; Yan, C. L.; Li, L. Strongly coupled Bi2S3@CNT hybrids for robust lithium storage. Adv. Energy Mater. 2014, 4, 1400798.
Zhang, Z. A.; Zhou, C. K.; Huang, L.; Wang, X. W.; Qu, Y. H.; Lai, Y. Q.; Li, J. Synthesis of bismuth sulfide/reduced graphene oxide composites and their electrochemical properties for lithium ion batteries. Electrochim. Acta 2013, 114, 88-94.
Zhao, Y.; Liu, T. T.; Xia, H.; Zhang, L.; Jiang, J. X.; Shen, M.; Ni, J. F.; Gao, L. J. Branch-structured Bi2S3-CNT hybrids with improved lithium storage capability. J. Mater. Chem. A 2014, 2, 13854-13858.
Liu, T. T.; Zhao, Y.; Gao, L. J.; Ni, J. F. Engineering Bi2O3- Bi2S3 heterostructure for superior lithium storage. Sci. Rep. 2015, 5, 9307.
Gopalsamy, K.; Xu, Z.; Zheng, B. N.; Huang, T. Q.; Kou, L.; Zhao, X. L.; Gao, C. Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors. Nanoscale 2014, 6, 8595-8600.
Xu, H. H.; Hu, X. L.; Yang, H. L.; Sun, Y. M.; Hu, C. C.; Huang, Y. H. Flexible asymmetric micro-supercapacitors based on Bi2O3 and MnO2nanoflowers: Larger areal mass promises higher energy density. Adv. Energy Mater. 2015, 5, 1401882.
Zheng, F. L.; Li, G. R.; Ou, Y. N.; Wang, Z. L.; Su, C. Y.; Tong, Y. X. Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications. Chem. Commun. 2010, 46, 5021-5023.
Li, Z.; Zhang, W.; Tan, Y. Y.; Hu, J. B.; He, S. Y.; Stein, A.; Tang, B. Three-dimensionally ordered macroporous β-Bi2O3 with enhanced electrochemical performance in a Li-ion battery. Electrochim. Acta 2016, 214, 103-109.
Li, Y. L.; Trujillo, M. A.; Fu, E. G.; Patterson, B.; Fei, L.; Xu, Y.; Deng, S. G.; Smirnov, S.; Luo, H. M. Bismuth oxide: A new lithium-ion battery anode. J. Mater. Chem. A 2013, 1, 12123-12127.
Wang, H.; Yang, H. X.; Lu, L. Topochemical synthesis of Bi2O3 microribbons derived from a bismuth oxalate precursor as high-performance lithium-ion batteries. RSC Adv. 2014, 4, 17483-17489.
Gao, D. L.; Zhang, Z. Y.; Ding, L.; Yang, J.; Li, Y. Preparation and electrocatalytic properties of triuranium octoxide supported on reduced graphene oxide. Nano Res. 2015, 8, 546-553.
Wang, H. L.; Dai, H. J. Strongly coupled inorganic-nano- carbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088-3113.
Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929.
Zhang, W.; Liu, Y. T.; Chen, C. J.; Li, Z.; Huang, Y. H.; Hu, X. L. Flexible and binder-free electrodes of Sb/rGO and Na3V2(PO4)3/rGO nanocomposites for sodium-ion batteries. Small 2015, 11, 3822-3829.
Liang, Y. Y.; Wang, H. L.; Diao, P.; Chang, W.; Hong, G. S.; Li, Y. G.; Gong, M.; Xie, L. M.; Zhou, J. G.; Wang, J. et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 15849-15857.
Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Dai, H. J. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013-2036.
Wang, H. L.; Liang, Y. Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H. J. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 2011, 4, 729-736.
Fang, W.; Zhang, N. Q.; Fan, L. S.; Sun, K. N. Bi2O3 nanoparticles encapsulated by three-dimensional porous nitrogen-doped graphene for high-rate lithium ion batteries. J. Power Sources 2016, 333, 30-36.
Nithya, C. Bi2O3@reduced graphene oxide nanocomposite: An anode material for sodium-ion storage. ChemPlusChem 2015, 80, 1000-1006.
Li, L.; Yang, Y. W.; Li, G. H.; Zhang, L. D. Conversion of a Bi nanowire array to an array of Bi-Bi2O3 core-shell nanowires and Bi2O3 nanotubes. Small 2006, 2, 548-553.
Wang, J. W.; Wang, X.; Peng, Q.; Li, Y. D. Synthesis and characterization of bismuth single-crystalline nanowires and nanospheres. Inorg. Chem. 2004, 43, 7552-7556.
Jiang, S. Q.; Wang, L.; Hao, W. C.; Li, W. X.; Xin, H. J.; Wang, W. W.; Wang, T. M. Visible-light photocatalytic activity of S-doped α-Bi2O3. J. Phys. Chem. C 2015, 119, 14094-14101.
Ni, J. F.; Li, Y. Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv. Energy Mater. 2016, 6, 1600278.
Ni, J. F.; Zhang, L.; Fu, S. D.; Savilov, S. V.; Aldoshin, S. M.; Lu, L. A review on integrating nano-carbons into polyanion phosphates and silicates for rechargeable lithium batteries. Carbon 2015, 92, 15-25.
Luo, B.; Qiu, T. F.; Ye, D. L.; Wang, L. Z.; Zhi, L. J. Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage. Nano Energy 2016, 22, 232-240.
Liu, J.; Yu, L. T.; Wu, C.; Wen, Y. R.; Yin, K. B.; Chiang, F. K.; Hu, R. Z.; Liu, J. W.; Sun, L. T.; Gu, L. et al. New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett. 2017, 17, 2034-2042.
Ni, J. F.; Zhao, Y.; Li, L.; Mai, L. Q. Ultrathin MoO2 nanosheets for superior lithium storage. Nano Energy 2015, 11, 129-135.
Liang, H. C.; Ni, J. F.; Li, L. Bio-inspired engineering of Bi2S3-PPy yolk-shell composite for highly durable lithium and sodium storage. Nano Energy 2017, 33, 213-220.
Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518-522.
Wang, Y. G.; Hong, Z. S.; Wei, M. D.; Xia, Y. Y. Layered H2Ti6O13-nanowires: A new promising pseudocapacitive material in non-aqueous electrolyte. Adv. Funct. Mater. 2012, 22, 5185-5193.
Ni, J. F.; Fu, S. D.; Wu, C.; Zhao, Y.; Maier, J.; Yu, Y.; Li, L. Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering. Adv. Energy Mater. 2016, 6, 1502568.
Fu, S. D.; Ni, J. F.; Xu, Y.; Zhang, Q.; Li, L. Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries. Nano Lett. 2016, 16, 4544-4551.
Feng, N. N.; He, P.; Zhou, H. S. Critical challenges in rechargeable aprotic Li-O2 batteries. Adv. Energy Mater. 2016, 6, 1502303.
Yang, S. X.; He, P.; Zhou, H. S. Exploring the electrochemical reaction mechanism of carbonate oxidation in Li-air/CO2 battery through tracing missing oxygen. Energy Environ. Sci. 2016, 9, 1650-1654.
Jiang, J.; He, P.; Tong, S. F.; Zheng, M. B.; Lin, Z. X.; Zhang, X. P.; Shi, Y.; Zhou, H. S. Ruthenium functionalized graphene aerogels with hierarchical and three-dimensional porosity as a free-standing cathode for rechargeable lithium- oxygen batteries. NPG Asia Mater. 2016, 8, e239.