AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanostructured organic electrode materials grown on graphene with covalent-bond interaction for high-rate and ultra-long-life lithium-ion batteries

Qing Zhao1Jianbin Wang1Chengcheng Chen1Ting Ma1Jun Chen1,2( )
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
Collaborative Innovation Center of Chemical Science and Engineering Nankai University Tianjin 300071 China
Show Author Information

Graphical Abstract

Abstract

Nanostructured organic tetralithium salts of 2, 5-dihydroxyterephthalic acid (Li4C8H2O6) supported on graphene were prepared via a facile recrystallization method. The optimized composite with 75 wt.% Li4C8H2O6 was evaluated as an anode with redox couples of Li4C8H2O6/Li6C8H2O6 and as a cathode with redox couples of Li4C8H2O6/Li2C8H2O6 for Li-ion batteries, exhibiting a high-rate capability (10 C) and long cycling life (1, 000 cycles). Moreover, in an all-organic symmetric Li-ion battery, this dual-function electrode retained capacities of 191 and 121 mA·h·g–1 after 100 and 500 cycles, respectively. Density functional theory calculations indicated the presence of covalent bonds between Li4C8H2O6 and graphene, which affected both the morphology and electronic structure of the composite. The special nanostructures, high electronic conductivity of graphene, and covalent-bond interaction between Li4C8H2O6 and graphene contributed to the superior electrochemical properties. Our results indicate that the combination of organic salt molecules with graphene is useful for obtaining high-performance organic batteries.

References

1

Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribière, P.; Poizot, P.; Tarascon, J. M. Conjugated dicarboxylate anodes for Li-ion batteries. Nat. Mater. 2009, 8, 120–125.

2

Liang, Y. L.; Tao, Z. L.; Chen, J. Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2012, 2, 742–769.

3

Lee, M.; Hong, J.; Kim, H.; Lim, H. D.; Cho, S. B.; Kang, K.; Park, C. B. Organic nanohybrids for fast and sustainable energy storage. Adv. Mater. 2014, 26, 2558–2565.

4

Cheng, F. Y.; Tang, W.; Li, C. S.; Chen, J.; Liu, H. K.; Shen, P. W.; Dou, S. X. Conducting poly(aniline) nanotubes and nanofibers: Controlled synthesis and application in lithium/ poly(aniline) rechargeable batteries. Chem. —Eur. J. 2006, 12, 3082–3088.

5

Wang, H.; Yang, Y.; Guo, L. Nature-inspired electrochemical energy-storage materials and devices. Adv. Energy Mater. 2017, 7, 1601709.

6

Zhao, Q.; Wang, J. B.; Lu, Y.; Li, Y. X.; Liang, G. X.; Chen, J. Oxocarbon salts for fast rechargeable batteries. Angew. Chem., Int. Ed. 2016, 55, 12528–12532.

7

Song, Z. P.; Zhou, H. S. Towards sustainable and versatile energy storage devices: An overview of organic electrode materials. Energy Environ. Sci. 2013, 6, 2280–2301.

8

Häupler, B.; Wild, A.; Schubert, U. S. Carbonyls: Powerful organic materials for secondary batteries. Adv. Energy Mater. 2015, 5, 1402034.

9

Hu, P. F.; Wang, H.; Yang, Y.; Yang, J.; Lin, J.; Guo, L. Renewable-biomolecule-based full lithium-ion batteries. Adv. Mater. 2016, 28, 3486–3492.

10

Zhao, Q.; Lu, Y.; Chen, J. Advanced organic electrode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 2017, 7, 1601792.

11

Zhang, K.; Guo, C. Y.; Zhao, Q.; Niu, Z. Q.; Chen, J. High-performance organic lithium batteries with an ether- based electrolyte and 9, 10-anthraquinone (AQ)/CMK-3 cathode. Adv. Sci. 2015, 2, 1500018.

12

Genorio, B.; Pirnat, K.; Cerc-Korosec, R.; Dominko, R.; Gaberscek, M. Electroactive organic molecules immobilized onto solid nanoparticles as a cathode material for lithium-ion batteries. Angew. Chem., Int. Ed. 2010, 49, 7222–7224.

13

Zhang, K.; Hu, Z.; Tao, Z. L.; Chen, J. Inorganic & organic materials for rechargeable Li batteries with multi-electron reaction. Sci. China Mater. 2014, 57, 42–58.

14

Han, X. Y.; Chang, C. X.; Yuan, L. J.; Sun, T. L.; Sun, J. T. Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials. Adv. Mater. 2007, 19, 1616–1621.

15

Liang, Y. L.; Zhang, P.; Chen, J. Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries. Chem. Sci. 2013, 4, 1330–1337.

16

Song, Z. P.; Zhan, H.; Zhou, Y. H. Polyimides: Promising energy-storage materials. Angew. Chem., Int. Ed. 2010, 122, 8622–8626.

17

Pirnat, K.; Mali, G.; Gaberscek, M.; Dominko, R. Quinone- formaldehyde polymer as an active material in Li-ion batteries. J. Power Sources 2016, 315, 169–178.

18

Liang, Y. L.; Chen, Z. H.; Jing, Y.; Rong, Y. G.; Facchetti, A.; Yao, Y. Heavily n-dopable π-conjugated redox polymers with ultrafast energy storage capability. J. Am. Chem. Soc. 2015, 137, 4956–4959.

19

Ma, T.; Zhao, Q.; Wang, J. B.; Pan, Z.; Chen, J. A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance rechargeable lithium-ion battery. Angew. Chem., Int. Ed. 2016, 55, 6428–6432.

20

Wu, H. P.; Meng, Q. H.; Yang, Q.; Zhang, M.; Lu, K.; Wei, Z. X. Large-area polyimide/SWCNT nanocable cathode for flexible lithium-ion batteries. Adv. Mater. 2015, 27, 6504–6510.

21

Wu, J. S.; Rui, X. H.; Wang, C. Y.; Pei, W. -B.; Lau, R.; Yan, Q. Y.; Zhang, Q. C. Nanostructured conjugated ladder polymers for stable and fast lithium storage anodes with high-capacity. Adv. Energy Mater. 2015, 5, 1402189.

22

Huang, W. W.; Zhu, Z. Q.; Wang, L. J.; Wang, S. W.; Li, H.; Tao, Z. L.; Shi, J. F.; Guan, L. H.; Chen, J. Quasi-solid-state rechargeable lithium-ion batteries with a calix[4]quinone cathode and gel polymer electrolyte. Angew. Chem., Int. Ed. 2013, 52, 9162–9166.

23

Zhu, Z. Q.; Hong, M. L.; Guo, D. S.; Shi, J. F.; Tao, Z. L.; Chen, J. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. J. Am. Chem. Soc. 2014, 136, 16461–16464.

24

Wang, L. P.; Zhang, H. Q.; Mou, C. X.; Cui, Q. L.; Deng, Q. J.; Xue, J.; Dai, X. Y.; Li, J. Z. Dicarboxylate CaC8H4O4 as a high-performance anode for Li-ion batteries. Nano Res. 2015, 8, 523–532.

25

Zhao, Q.; Guo, C. Y.; Lu, Y.; Liu, L. J.; Liang, J.; Chen, J. Rechargeable lithium batteries with electrodes of small organic carbonyl salts and advanced electrolytes. Ind. Eng. Chem. Res. 2016, 55, 5795–5804.

26

Chen, H. Y.; Armand, M.; Demailly, G.; Dolhem, F.; Poizot, P.; Tarascon, J. -M. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 2008, 1, 348–355.

27

Wang, H. G.; Yuan, S.; Si, Z. J.; Zhang, X. B. Multi-ring aromatic carbonyl compounds enabling high capacity and stable performance of sodium-organic batteries. Energy Environ. Sci. 2015, 8, 3160–3165.

28

Renault, S.; Gottis, S.; Barrès, A. -L.; Courty, M.; Chauvet, O.; Dolhem, F.; Poizot, P. A green Li-organic battery working as a fuel cell in case of emergency. Energy Environ. Sci. 2013, 6, 2124–2133.

29

Wang, S. W.; Wang, L. J.; Zhang, K.; Zhu, Z. Q.; Tao, Z. L.; Chen, J. Organic Li4C8H2O6 nanosheets for lithium-ion batteries. Nano Lett. 2013, 13, 4404–4409.

30

Luo, C.; Huang, R. M.; Kevorkyants, R.; Pavanello, M.; He, H. X.; Wang, C. S. Self-assembled organic nanowires for high power density lithium ion batteries. Nano Lett. 2014, 14, 1596–1602.

31

Xiang, J. F.; Chang, C. X.; Li, M.; Wu, S. M.; Yuan, L. J.; Sun, J. T. A novel coordination polymer as positive electrode material for lithium ion battery. Cryst. Growth Des. 2008, 8, 280–282.

32

Walker, W.; Grugeon, S.; Mentre, O.; Laruelle, S.; Tarascon, J. -M.; Wudl, F. Ethoxycarbonyl-based organic electrode for Li-batteries. J. Am. Chem. Soc. 2010, 132, 6517–6523.

33

Kim, H.; Seo, D. -H.; Yoon, G.; Goddard, W. A.; Lee, Y. S.; Yoon, W. -S.; Kang, K. The reaction mechanism and capacity degradation model in lithium insertion organic cathodes, Li2C6O6, using combined experimental and first principle studies. J. Phys. Chem. Lett. 2014, 5, 3086–3092.

34

Tian, X. C.; Xiao, B.; Xu, X.; Xu, L.; Liu, Z. H.; Wang, Z. Y.; Yan, M. Y.; Wei, Q. L.; Mai, L. Q. Vertically stacked holey graphene/polyaniline heterostructures with enhanced energy storage for on-chip micro-supercapacitors. Nano Res. 2016, 9, 1012–1021.

35

Wu, H. P.; Shevlin, S. A.; Meng, Q. H.; Guo, W.; Meng, Y. N.; Lu, K.; Wei, Z. X.; Guo, Z. X. Flexible and binder-free organic cathode for high-performance lithium-ion batteries. Adv. Mater. 2014, 26, 3338–3343.

36

Park, M.; Shin, D. -S.; Ryu, J.; Choi, M.; Park, N.; Hong, S. Y.; Cho, J. Organic-catholyte-containing flexible rechargeable lithium batteries. Adv. Mater. 2015, 27, 5141–5146.

37

Guo, W.; Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. Energy Environ. Sci. 2012, 5, 5221–5225.

38

Song, Z. P.; Xu, T.; Gordin, M. L.; Jiang, Y. -B.; Bae, I. -T.; Xiao, Q. F.; Zhan, H.; Liu, J.; Wang, D. H. Polymer–graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries. Nano Lett. 2012, 12, 2205–2211.

39

Yu, Q. P.; Chen, D. R.; Liang, J. H.; Chu, Y. H.; Wu, Y. W.; Zhang, W. G.; Li, Y. S.; Li, L.; Zeng, R. H. Facile synthesis of Li2C8H4O4-graphene composites as high-rate and sustainable anode materials for lithium ion batteries. RSC Adv. 2014, 4, 59498–59502.

40

Xiang, X. D.; Lu, Y. Y.; Chen, J. Advance and prospect of functional materials for sodium ion batteries. Acta Chim. Sinica 2017, 75, 154–162.

41

Meng, Y. N.; Wu, H. P.; Zhang, Y. J.; Wei, Z. X. A flexible electrode based on a three-dimensional graphene network- supported polyimide for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 10842–10846.

42

Liang, Y. L.; Zhang, P.; Yang, S. Q.; Tao, Z. L.; Chen, J. Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries. Adv. Energy Mater. 2013, 3, 600–605.

43

Wang, H.; Hu, P. F.; Yang, J.; Gong, G. M.; Guo, L.; Chen, X. D. Renewable-juglone-based high-performance sodium-ion batteries. Adv. Mater. 2015, 27, 2348–2354.

44

Yu, Y. X. A dispersion-corrected DFT study on adsorption of battery active materials anthraquinone and its derivatives on monolayer graphene and h-BN. J. Mater. Chem. A 2014, 2, 8910–8917.

45

Krepel, D.; Hod, O. Lithium-mediated benzene adsorption on graphene and graphene nanoribbons. J. Phys. Chem. C 2013, 117, 19477–19488.

46

Pei, L. K.; Jin, Q.; Zhu, Z. Q.; Zhao, Q.; Liang, J.; Chen, J. Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three-dimensional graphene. Nano Res. 2015, 8, 184–192.

47

McAllister, M. J.; Li, J. -L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.

48

Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W. C.; Cheng, F. Y.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014, 7, 199–208.

49

Zhang, K.; Zhao, Q.; Tao, Z. L.; Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 2013, 6, 38–46.

50

Zhu, Z. Q.; Cheng, F. Y.; Chen, J. Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites. J. Mater. Chem. A. 2013, 1, 9484–9490.

51

Kang, H. S. Theoretical study of binding of metal-doped graphene sheet and carbon nanotubes with dioxin. J. Am. Chem. Soc. 2005, 127, 9839–9843.

52

Gromov, A.; Ostrovskii, D.; Lassesson, A.; Jönsson, M.; Campbell, E. E. B. Fourier transform infrared and raman spectroscopic study of chromatographically isolated Li@C60 and Li@C70. J. Phys. Chem. B 2003, 107, 11290–11301.

53

Leroy, S.; Blanchard, F.; Dedryvère, R.; Martinez, H.; Carré, B.; Lemordant, D.; Gonbeau, D. Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study. Surf. Interface Anal. 2005, 37, 773–781.

54

Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2016, 28, 1853–1858.

55

Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E.; Ein-Eli, Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 1999, 45, 67–86.

56

Zhang, Q. F.; Wang, Y. P.; Seh, Z. W.; Fu, Z. H.; Zhang, R. F.; Cui, Y. Understanding the anchoring effect of two-dimensional layered materials for lithium–sulfur batteries. Nano Lett. 2015, 15, 3780–3786.

57

Goldfuss, B.; von RaguéSchleyer, P.; Hampel, F. Alkali metal cation π-interactions in metalated and nonmetalated acetylenes: Π-bonded lithiums in the X-ray crystal structures of [Li−C≡C−SiMe2−C6H4−OMe]6 and [Li−O−CMe2−C≡C−H]6 and computational studies. J. Am. Chem. Soc. 1997, 119, 1072–1080.

58

Davies, J. E.; Davies, R. P.; Dunbar, L.; Raithby, P. R.; Russell, M. G.; Snaith, R.; Warren, S.; Wheatley, A. E. H. The first lithiated phosphane oxide with Li-C bonds: Synthesis and structure of [{Ph2P(O)CHLiC(H)MeEt}4]. Angew. Chem., Int. Ed. 1997, 36, 2334–2335.

59

Ogawa, Y.; Niu, T. C.; Wong, S. L.; Tsuji, M.; Wee, A. T. S.; Chen, W.; Ago, H. Self-assembly of polar phthalocyanine molecules on graphene grown by chemical vapor deposition. J. Phys. Chem. C 2013, 117, 21849–21855.

60

Wang, C. L.; Xu, Y.; Fang, Y. G.; Zhou, M.; Liang, L. Y.; Singh, S.; Zhao, H. P.; Schober, A.; Lei, Y. Extended π-conjugated system for fast-charge and -discharge sodium-ion batteries. J. Am. Chem. Soc. 2015, 137, 3124–3130.

61

Hamon, Y.; Brousse, T.; Jousse, F.; Topart, P.; Buvat, P.; Schleich, D. M. Aluminum negative electrode in lithium ion batteries. J. Power Sources 2001, 97–98, 185–187.

62

Chen, H. Y.; Armand, M.; Courty, M.; Jiang, M.; Grey, C. P.; Dolhem, F.; Tarascon, J. -M.; Poizot, P. Lithium salt of tetrahydroxybenzoquinone: Toward the development of a sustainable Li-ion battery. J. Am. Chem. Soc. 2009, 131, 8984–8988.

63

Jian, Z. L.; Han, W. Z.; Liang, Y. L.; Lan, Y. C.; Fang, Z.; Hu, Y. -S.; Yao, Y. Carbon-coated rhombohedral Li3V2(PO4)3 as both cathode and anode materials for lithium-ion batteries: Electrochemical performance and lithium storage mechanism. J. Mater. Chem. A 2014, 2, 20231–20236.

Nano Research
Pages 4245-4255
Cite this article:
Zhao Q, Wang J, Chen C, et al. Nanostructured organic electrode materials grown on graphene with covalent-bond interaction for high-rate and ultra-long-life lithium-ion batteries. Nano Research, 2017, 10(12): 4245-4255. https://doi.org/10.1007/s12274-017-1580-9

722

Views

57

Crossref

N/A

Web of Science

52

Scopus

4

CSCD

Altmetrics

Received: 21 January 2017
Revised: 08 March 2017
Accepted: 09 March 2017
Published: 06 July 2017
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2017
Return