AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Construction of hierarchical three-dimensional interspersed flower-like nickel hydroxide for asymmetric supercapacitors

Wutao Wei1Weihua Chen2( )Luoyi Ding1Shizhong Cui1Liwei Mi1 ( )
Center for Advanced Materials ResearchZhongyuan University of TechnologyZhengzhou450007China
College of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhou450001China
Show Author Information

Graphical Abstract

Abstract

Low-cost and easily obtainable electrode materials are crucial for the application of supercapacitors. Nickel hydroxides have recently attracted intensive attention owning to their high theoretical specific capacitance, high redox activity, low cost, and eco-friendliness. In this study, novel three-dimensional (3D) interspersed flower-like nickel hydroxide was assembled under mild conditions. When ammonia was used as the precipitant and inhibitor and CTAB was used as an exfoliation agent, the obtained exfoliated ultrathin Ni(OH)2 nanosheets were assembled into 3D interspersed flower-like nickel hydroxide. In this novel 3D structure, the ultrathin Ni(OH)2 nanosheets not only provided a large contact area with the electrolyte, reducing the polarization of the electrochemical reaction and providing more active sites, but also reduced the concentration polarization in the electrode solution interface. Consequently, the utilization efficiency of the active material was improved, yielding a high capacitance. The electrochemical performance was improved via promoting the electrical conductivity by mixing the as-synthesized Ni(OH)2 with carbon tubes (N-4-CNT electrode), yielding excellent specific capacitances of 2, 225.1 F·g–1 at 0.5 A·g–1 in a three-electrode system and 722.0 F·g–1 at 0.2 A·g–1 in a two-electrode system. The N-4-CNT//active carbon (AC) device exhibited long-term cycling performance (capacitance-retention ratio of 111.4% after 10, 000 cycles at 5 A·g–1) and a high specific capacitance of 180.5 F·g–1 with a high energy density of 33.5 W·h·kg–1 and a power density of 2, 251.6 W·kg–1.

Electronic Supplementary Material

Download File(s)
nr-10-11-3726_ESM.pdf (1.1 MB)

References

1

Peng, X.; Peng, L. L.; Wu, C. Z.; Xie, Y. Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 2014, 43, 3303–3323.

2

Park, S.; Shim, H. -W.; Lee, C. W.; Song, H. J.; Kim, J. -C.; Kim, D. -W. High-power and long-life supercapacitive performance of hierarchical, 3-D urchin-like W18O49 nanostructure electrodes. Nano Res. 2016, 9, 633–643.

3

Zhang, Y. -Z.; Wang, Y.; Cheng, T.; Lai, W. -Y.; Pang, H.; Huang, W. Flexible supercapacitors based on paper substrates: A new paradigm for low-cost energy storage. Chem. Soc. Rev. 2015, 44, 5181–5199.

4

Wang, L. B.; Yang, H. L.; Liu, X. X.; Zeng, R.; Li, M.; Huang, Y. H.; Hu, X. L. Constructing hierarchical tectorumlike α-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors. Angew. Chem., Int. Ed. 2017, 56, 1105–1110.

5

Lin, T. Q.; Chen, I. -W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513.

6

Hu, X. L.; Zhang, W.; Liu, X. X.; Mei, Y. N.; Huang, Y. H. Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem. Soc. Rev. 2015, 44, 2376–2404.

7

Xu, H. H.; Hu, X. L.; Yang, H. L.; Sun, Y. M.; Hu, C. C.; Huang, Y. H. Flexible asymmetric micro-supercapacitors based on Bi2O3 and MnO2 nanoflowers: Larger areal mass promises higher energy density. Adv. Energy Mater. 2015, 5, 1401882.

8

Qu, L. B.; Zhao, Y. L.; Khan, A. M.; Han, C. H.; Hercule, K. M.; Yan, M. Y.; Liu, X. Y.; Chen, W.; Wang, D. D.; Cai, Z. Y. et al. Interwoven three-dimensional architecture of cobalt oxide nanobrush-graphene@NixCo2x (OH)6x for high-performance supercapacitors. Nano Lett. 2015, 15, 2037–2044.

9

Wang, G. P.; Zhang, L.; Zhang, J. J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828.

10

Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313–318.

11

Shen, L. F.; Yu, L.; Wu, H. B.; Yu, X. -Y.; Zhang, X. G.; Lou, X. W. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 2015, 6, 6694.

12

Xu, Y. X.; Chen, C. -Y.; Zhao, Z. P.; Lin, Z. Y.; Lee, C.; Xu, X.; Wang, C.; Huang, Y.; Shakir, M. I.; Duan, X. F. Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors. Nano Lett. 2015, 15, 4605–4610.

13

Yang, Y. J.; He, L.; Tang, C. J.; Hu, P.; Hong, X. F.; Yan, M. Y.; Dong, Y. X.; Tian, X. C.; Wei, Q. L.; Mai, L. Q. Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. Nano Res. 2016, 9, 2510–2519.

14

Zheng, X.; Han, Z. C.; Chai, F.; Qu, F. Y.; Xia, H.; Wu, X. Flexible heterostructured supercapacitor electrodes based on α-Fe2O3 nanosheets with excellent electrochemical performances. Dalton Trans. 2016, 45, 12862–12870.

15

Qu, G.; Jia, S. F.; Wang, H.; Cao, F.; Li, L.; Qing, C.; Sun, D. M.; Wang, B. X.; Tang, Y. W.; Wang, J. B. Asymmetric supercapacitor based on porous N-doped carbon derived from pomelo peel and NiO arrays. ACS Appl. Mater. Interfaces 2016, 8, 20822–20830.

16

Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Res. 2016, 9, 2026–2033.

17

Li, L.; Gao, P.; Gai, S. L.; He, F.; Chen, Y. J.; Zhang, M. L.; Yang, P. P. Ultra small and highly dispersed Fe3O4 nanoparticles anchored on reduced graphene for supercapacitor application. Electrochim. Acta 2016, 190, 566–573.

18

Wu, H.; Jiang, K.; Gu, S. S.; Yang, H.; Luo, Z.; Chen, D.; Shen, G. Z. Two-dimensional Ni(OH)2 nanoplates for flexible on-chip microsupercapacitors. Nano Res. 2015, 8, 3544–3552.

19

Tahir, M.; Mahmood, N.; Pan, L.; Huang, Z. -F.; Lv, Z.; Zhang, J. W.; Butt, F. K.; Shen, G. Q.; Zhang, X. W.; Dou, S. X. Et al. Efficient water oxidation through strongly coupled graphitic C3N4 coated cobalt hydroxide nanowires. J. Mater. Chem. A 2016, 4, 12940–12946.

20

Ma, F. -X.; Yu, L.; Xu, C. -Y.; Lou, X. W. Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties. Energy Environ. Sci. 2016, 9, 862–866.

21

Yu, X. -Y.; Yu, L.; Lou, X. W. Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 2016, 6, 1501333.

22

Shen, J. F.; Wu, J. J.; Pei, L. Y.; Rodrigues, M. -T. F.; Zhang, Z. Q.; Zhang, F. F.; Zhang, X.; Ajayan, P. M.; Ye, M. X. CoNi2S4-graphene-2D-MoSe2 as an advanced electrode material for supercapacitors. Adv. Energy Mater. 2016, 6, 1600341.

23

Jia, R. Y.; Zhu, F.; Sun, S.; Zhai, T.; Xia, H. Dual support ensuring high-energy supercapacitors via high-performance NiCo2S4@Fe2O3 anode and working potential enlarged MnO2 cathode. J. Power Sources 2017, 341, 427–434.

24

Meng, G.; Yang, Q.; Wu, X. C.; Wan, P. B.; Li, Y. P.; Lei, X. D.; Sun, X. M.; Liu, J. F. Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor. Nano Energy 2016, 30, 831–839.

25

Zhang, L.; Dou, S. X.; Liu, H. K.; Huang, Y. H.; Hu, X. L. Symmetric electrodes for electrochemical energy-storage devices. Adv. Sci. 2016, 3, 1600115.

26

Hu, J.; Li, M. C.; Lv, F. C.; Yang, M. Y.; Tao, P. P.; Tang, Y. G.; Liu, H. T.; Lu, Z. G. Heterogeneous NiCo2O4@polypyrrole core/sheath nanowire arrays on Ni foam for high performance supercapacitors. J. Power Sources 2015, 294, 120–127.

27

Sun, M. -H.; Huang, S. -Z.; Chen, L. -H.; Li, Y.; Yang, X. -Y.; Yuan, Z. -Y.; Su, B. -L. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 2016, 45, 3479–3563.

28

Jiang, W. C.; Yu, D. S.; Zhang, Q.; Goh, K.; Wei, L.; Yong, Y. L.; Jiang, R. R.; Wei, J.; Chen, Y. Ternary hybrids of amorphous nickel hydroxide–carbon nanotube-conducting polymer for supercapacitors with high energy density, excellent rate capability, and long cycle life. Adv. Funct. Mater. 2015, 25, 1063–1073.

29

Min, S. D.; Zhao, C. J.; Zhang, Z. M.; Chen, G. R.; Qian, X. Z.; Guo, Z. P. Synthesis of Ni(OH)2/RGO pseudocomposite on nickel foam for supercapacitors with superior performance. J. Mater. Chem. A 2015, 3, 3641–3650.

30

Nunes, C. V., Jr.; Danczuk, M.; Bortoti, A. A.; Gonςalves, J. M.; Araki, K.; Anaissi, F. J. Unexpected effect of drying method on the microstructure and electrocatalytic properties of bentonite/alpha-nickel hydroxide nanocomposite. J. Power Sources 2015, 297, 408–412.

31

Xu, Y. X.; Huang, X. Q.; Lin, Z. Y.; Zhong, X.; Huang, Y.; Duan, X. F. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 2013, 6, 65–67.

32

Liu, Y.; Lan, K.; Li, S. S.; Liu, Y. M.; Kong, B.; Wang, G.; Zhang, P. F.; Wang, R. C.; He, H. L.; Ling, Y. et al. Constructing three-dimensional mesoporous bouquet-posy-like TiO2 superstructures with radially oriented mesochannels and single-crystal walls. J. Am. Chem. Soc. 2017, 139, 517–526.

33

Zeng, L. C.; Yao, Y.; Shi, J.; Jiang, Y.; Li, W. H.; Gu, L.; Yu, Y. A flexible S1–xSex@porous carbon nanofibers (x ≤ 0.1) thin film with high performance for Li-S batteries and room-temperature Na-S batteries. Energy Storage Mater. 2016, 5, 50–57.

34

Wang, Q. H.; Zhu, Y. X.; Xue, J.; Zhao, X. S.; Guo, Z. P.; Wang, C. General synthesis of porous mixed metal oxide hollow spheres with enhanced supercapacitive properties. ACS Appl. Mater. Interfaces 2016, 8, 17226–17232.

35

Lu, Z. Y.; Yang, Q.; Zhu, W.; Chang, Z.; Liu, J. F.; Sun, X. M.; Evans, D. G.; Duan, X. Hierarchical Co3O4@Ni-Co-O supercapacitor electrodes with ultrahigh specific capacitance per area. Nano Res. 2012, 5, 369–378.

36

Zhai, T.; Lu, X. H.; Wang, F. X.; Xia, H.; Tong, Y. X. MnO2 nanomaterials for flexible supercapacitors: Performance enhancement via intrinsic and extrinsic modification. Nanoscale Horiz. 2016, 1, 109–124.

37

Varadwaj, G. B. B.; Nyamori, V. O. Layered double hydroxide-and graphene-based hierarchical nanocomposites: Synthetic strategies and promising applications in energy conversion and conservation. Nano Res. 2016, 9, 3598–3621.

38

Sun, Y. M.; Sills, R. B.; Hu, X. L.; Seh, Z. W.; Xiao, X.; Xu, H. H.; Luo, W.; Jin, H. Y.; Xin, Y.; Li, T. Q. et al. A bamboo-inspired nanostructure design for flexible, foldable, and twistable energy storage devices. Nano Lett. 2015, 15, 3899–3906.

39

Jiang, D.; Jiang, Y. Y.; Li, Z. M.; Liu, T.; Wo, X.; Fang, Y. M.; Tao, N. J.; Wang, W.; Chen, H. -Y. Optical imaging of phase transition and Li-ion diffusion kinetics of single LiCoO2 nanoparticles during electrochemical cycling. J. Am. Chem. Soc. 2017, 139, 186–192.

40

Ida, S.; Shiga, D.; Koinuma, M.; Matsumoto, Y. Synthesis of hexagonal nickel hydroxide nanosheets by exfoliation of layered nickel hydroxide intercalated with dodecyl sulfate ions. J. Am. Chem. Soc. 2008, 130, 14038–14039.

41

Zhang, L. -L.; Li, H. -H.; Fan, C. -Y.; Wang, K.; Wu, X. -L.; Sun, H. -Z.; Zhang, J. -P. A vertical and cross-linked Ni(OH)2 network on cellulose-fiber covered with graphene as a binderfree electrode for advanced asymmetric supercapacitors. J. Mater. Chem. A 2015, 3, 19077–19084.

42

Tang, Y. F.; Liu, Y. Y.; Yu, S. X.; Zhao, Y. F.; Mu, S. C.; Gao, F. M. Hydrothermal synthesis of a flower-like nanonickel hydroxide for high performance supercapacitors. Electrochim. Acta 2014, 123, 158–166.

43

Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

44

Lai, F. L.; Miao, Y. -E.; Zuo, L. Z.; Lu, H. Y.; Huang, Y. P.; Liu, T. X. Biomass-derived nitrogen-doped carbon nanofiber network: A facile template for decoration of ultrathin nickel-cobalt layered double hydroxide nanosheets as highperformance asymmetric supercapacitor electrode. Small 2016, 12, 3235–3244.

45

Zhang, C.; Zhao, J. W.; Zhou, L.; Li, Z. H.; Shao, M. F.; Wei, M. Layer-by-layer assembly of exfoliated layered double hydroxide nanosheets for enhanced electrochemical oxidation of water. J. Mater. Chem. A 2016, 4, 11516–11523.

46

Cheng, H. L.; Duong, H. M. Three dimensional carbon nanotube/nickel hydroxide gels for advanced supercapacitors. RSC Adv. 2015, 5, 30260–30267.

47

Raj, P. P.; Mohan, S.; Jha, S. K. Controlled reverse pulse electrosynthesized spike-piece-structured Ni/Ni(OH)2 interlayer nanoplates for electrochemical pseudocapacitor applications. Chem. Comm. 2016, 52, 1930–1933.

48

Niu, H.; Zhou, D.; Yang, X.; Li, X.; Wang, Q.; Qu, F. Y. Towards three-dimensional hierarchical ZnO nanofiber@ Ni(OH)2 nanoflake core-shell heterostructures for highperformance asymmetric supercapacitors. J. Mater. Chem. A 2015, 3, 18413–18421.

49

Liang, Z. -H.; Zhu, Y. -J.; Hu, X. -L. β-Nickel hydroxide nanosheets and their thermal decomposition to nickel oxide nanosheets. J. Phys. Chem. B 2004, 108, 3488–3491.

50

Zhao, Y. D.; Gu, G. C.; You, S. G.; Ji, R. H.; Suo, H.; Zhao, C.; Liu, F. M. Preparation of Ni(OH)2 nanosheets on Ni foam via a direct precipitation method for a highly sensitive non-enzymatic glucose sensor. RSC Adv. 2015, 5, 53665–53670.

51

Li, N.; Yang, G. Z.; Sun, Y.; Song, H. W.; Cui, H.; Yang, G. W.; Wang, C. X. Free-standing and transparent graphene membrane of polyhedron box-shaped basic building units directly grown using a NaCl template for flexible transparent and stretchable solid-state supercapacitors. Nano Lett. 2015, 15, 3195–3203.

52

Ren, Q.; Wang, R. F.; Wang, H.; Key, J.; Brett, D. J. L.; Ji, S.; Yin, S. B.; Shen, P. K. Ranunculus flower-like Ni(OH)2@ Mn2O3 as a high specific capacitance cathode material for alkaline supercapacitors. J. Mater. Chem. A 2016, 4, 7591–7595.

53

Min, S. D.; Zhao, C. J.; Zhang, Z. M.; Wang, K.; Chen, G. R.; Qian, X. Z.; Guo, Z. P. Hydrothermal growth of MnO2/RGO/Ni(OH)2 on nickel foam with superior supercapacitor performance. RSC Adv. 2015, 5, 62571–62576.

54

Ke, Q. Q.; Guan, C.; Zheng, M. R.; Hu, Y. T.; Ho, K. -H.; Wang, J. 3D hierarchical SnO2@Ni(OH)2 core–shell nanowire arrays on carbon cloth for energy storage application. J. Mater. Chem. A 2015, 3, 9538–9542.

55

Hu, M. Z.; He, J. H.; Yang, M. Q.; Hu, X. C.; Yan, C. X.; Cheng, Z. X. Hydrothermal synthesis of nanostructured flower-like Ni(OH)2 particles and their excellent sensing performance towards low concentration HCN gas. RSC Adv. 2015, 5, 26823–26831.

56

Veerasubramani, G. K.; Krishnamoorthy, K.; Kim, S. J. Improved electrochemical performances of binder-free CoMoO4 nanoplate arrays@Ni foam electrode using redox additive electrolyte. J. Power Sources 2016, 306, 378–386.

57

He, G. J.; Li, J. M.; Li, W. Y.; Li, B.; Noor, N.; Xu, K. B.; Hu, J. Q.; Parkin, I. P. One pot synthesis of nickel foam supported self-assembly of NiWO4 and CoWO4 nanostructures that act as high performance electrochemical capacitor electrodes. J. Mater. Chem. A 2015, 3, 14272–14278.

58

Li, X. M.; Jiang, L. F.; Zhou, C.; Liu, J. P.; Zeng, H. B. Integrating large specific surface area and high conductivity in hydrogenated NiCo2O4 double-shell hollow spheres to improve supercapacitors. NPG Asia Mater. 2015, 7, e165.

59

Pendashteh, A.; Moosavifard, S. E.; Rahmanifar, M. S.; Wang, Y.; El-Kady, M. F.; Kaner, R. B.; Mousavi, M. F. Highly ordered mesoporous CuCo2O4 nanowires, a promising solution for high-performance supercapacitors. Chem. Mater. 2015, 27, 3919–3926.

60

Lv, Q. Y.; Wang, S.; Sun, H. Y.; Lou, J.; Xiao, J.; Xiao, J.; Xiao, F.; Wang, S. Solid-state thin-film supercapacitors with ultrafast charge/discharge based on N-doped-carbontubes/Au-nanoparticles-doped-MnO2 nanocomposites. Nano Lett. 2016, 16, 40–47.

61

Zhang, J.; Feng, H. J.; Yang, J. Q.; Qin, Q.; Fan, H. M.; Wei, C. Y.; Zheng, W. J. Solvothermal synthesis of three-dimensional hierarchical CuS microspheres from a Cu-based ionic liquid precursor for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 21735–21744.

62

Zhang, J.; Liu, F.; Cheng, J. P.; Zhang, X. B. Binary nickel-cobalt oxides electrode materials for high-performance supercapacitors: Influence of its composition and porous nature. ACS Appl. Mater. Interfaces 2015, 7, 17630–17640.

63

Salunkhe, R. R.; Tang, J.; Kamachi, Y.; Nakato, T.; Kim, J. H.; Yamauchi, Y. Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework. ACS Nano 2015, 9, 6288–6296.

64

Huang, J. L.; Wang, J. Y.; Wang, C. W.; Zhang, H. N.; Lu, C. X.; Wang, J. Z. Hierarchical porous graphene carbon-based supercapacitors. Chem. Mater. 2015, 27, 2107–2113.

65

Yang, J.; Yu, C.; Fan, X. M.; Liang, S. X.; Li, S. F.; Huang, H. W.; Ling, Z.; Hao, C.; Qiu, J. S. Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy Environ. Sci. 2016, 9, 1299–1307.

66

Liu, S. D.; Hui, K. S.; Hui, K. N.; Yun, J. M.; Kim, K. H. Vertically stacked bilayer CuCo2O4/MnCo2O4 heterostructures on functionalized graphite paper for high-performance electrochemical capacitors. J. Mater. Chem. A 2016, 4, 8061–8071.

67

Yang, X. W.; Lin, Z. X.; Zheng, J. X.; Huang, Y. J.; Chen, B.; Mai, Y. Y.; Feng, X. L. Facile template-free synthesis of vertically aligned polypyrrole nanosheets on nickel foams for flexible all-solid-state asymmetric supercapacitors. Nanoscale 2016, 8, 8650–8657.

68

Wang, F. X.; Wang, X. W.; Chang, Z.; Wu, X. W.; Liu, X.; Fu, L. J.; Zhu, Y. S.; Wu, Y. P.; Huang, W. A quasisolid-state sodium-ion capacitor with high energy density. Adv. Mater. 2015, 27, 6962–6968.

69

Yi, H.; Wang, H. W.; Jing, Y. T.; Peng, T. G.; Wang, Y. R.; Guo, J.; He, Q. L.; Guo, Z. H.; Wang, X. F. Advanced asymmetric supercapacitors based on CNT@Ni(OH)2 core–shell composites and 3D graphene networks. J. Mater. Chem. A 2015, 3, 19545–19555.

Nano Research
Pages 3726-3742
Cite this article:
Wei W, Chen W, Ding L, et al. Construction of hierarchical three-dimensional interspersed flower-like nickel hydroxide for asymmetric supercapacitors. Nano Research, 2017, 10(11): 3726-3742. https://doi.org/10.1007/s12274-017-1586-3

745

Views

85

Crossref

N/A

Web of Science

86

Scopus

0

CSCD

Altmetrics

Received: 05 January 2017
Revised: 06 March 2017
Accepted: 12 March 2017
Published: 06 June 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return