Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Composites incorporating nanoparticles (NPs) within metal-organic frameworks (MOFs) find applications in many different fields. In particular, using MOF layers as molecular sieves built on the NPs could enable selectivity in heterogeneous catalysis. However, such composites typically exhibit low catalytic efficiency, due to the slow diffusion of the reactants in the long and narrow channels of the MOF shell. In order to improve the catalytic efficiency of these systems, here we report the fabrication of NPs incorporated in nanosized MOFs (NPs@nano-MOFs), obtained by reducing the size of the MOF crystals grown around the NPs. The crystal size of the composites was controlled by modulating the nucleation rate of the MOFs during the encapsulation of pre-synthesized and catalytically active NPs; in this way, NPs@MOF crystals smaller than 50 nm were synthesized and subsequently used as highly efficient catalysts. Due to the shorter path from the MOF surface to the active sites, the obtained Pt@nano-MOFs composites showed a higher conversion rate than their larger-sized counterparts in the synthesis of imines via cascade reaction of nitrobenzene and in the hydrogenation of olefins, while retaining the excellent size and shape selectivity associated with the molecular sieving effect of the MOF layer. The present strategy can also be applied to prepare other encapsulated nanostructures combining various types of NPs and nano-MOFs, thus highlighting the broad potential of this approach for developing optimized catalysts with high reactivity and selectivity.
Dhakshinamoorthy, A.; Garcia, H. Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chem. Soc. Rev. 2012, 41, 5262–5284.
Moon, H. R.; Lim, D. W.; Suh, M. P. Fabrication ofmetal nanoparticles in metal-organic frameworks. Chem. Soc. Rev. 2013, 42, 1807–1824.
Hu, P.; Morabito, J. V.; Tsung, C. K. Core–shell catalysts of metal nanoparticle core and metal-organic framework shell. ACS Catal. 2014, 4, 4409–4419.
Liu, Y. L.; Tang, Z. Y. Multifunctional nanoparticle@MOF core-shell nanostructures. Adv. Mater. 2013, 25, 5819–5825.
Xu, X. B.; Zhang, Z. C.; Wang, X. Well-defined metal-organic-framework hollow nanostructures for catalytic reactions involving gases. Adv. Mater. 2015, 27, 5365–5371.
Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; Rönnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: A double solvents approach. J. Am. Chem. Soc. 2012, 134, 13926–13929.
Hou, C.; Zhao, G. F.; Ji, Y. J.; Niu, Z. Q.; Wang, D. S.; Li, Y. D. Hydroformylation of alkenes over rhodium supported on the metal-organic framework ZIF-8. Nano Res. 2014, 7, 1364–1369.
Liu, H. L.; Chang, L.; Bai, C. H.; Chen, L. Y.; Luque, R.; Li, Y. W. Controllable encapsulation of "clean" metal clusters within MOFs through kinetic modulation: Towards advanced heterogeneous nanocatalysts. Angew. Chem., Int. Ed. 2016, 55, 5019–5023.
Choi, K. M.; Na, K.; Somorjai, G. A.; Yaghi, O. M. Chemical environment control and enhanced catalytic performance of platinum nanoparticles embedded in nanocrystalline metalorganic frameworks. J. Am. Chem. Soc. 2015, 137, 7810–7816.
Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.
Yang, Q.; Liu, W. X.; Wang, B. Q.; Zhang, W. N.; Zeng, X. Q.; Zhang, C.; Qin, Y. J.; Sun, X. M.; Wu, T. P.; Liu, J. F. et al. Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nat. Commun. 2017, 8, 14429.
Yang, J.; Zhang, F. J.; Lu, H. Y.; Hong, X.; Jiang, H. L.; Wu, Y. E.; Li, Y. D. Hollow Zn/Co ZIF particles derived from core–shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem., Int. Ed. 2015, 54, 10889–10893.
Xu, Z. L.; Zhang, W. N.; Weng, J. N.; Huang, W.; Tian, D. B.; Huo, F. W. Encapsulation of metal layers within metal-organic frameworks as hybrid thin films for selective catalysis. Nano Res. 2016, 9, 158–164.
Li, Z.; Yu, R.; Huang, J. L.; Shi, Y. S.; Zhang, D. Y.; Zhong, X. Y.; Wang, D. S.; Wu, Y.; Li, Y. D. Platinum-nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving. Nat. Commun. 2015, 6, 8248.
Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.
Liu, Y. Y.; Zhang, W. N.; Li, S. Z.; Cui, C. L.; Wu, J.; Chen, H. Y.; Huo, F. W. Designable yolk–shell nano-particle@MOFpetalousheterostructures. Chem. Mater. 2014, 26, 1119–1125.
Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Pd nanocubes@ ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem. 2016, 128, 3749–3753.
Kuo, C. H.; Tang, Y.; Chou, L. Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z. P.; Tsung, C. K. Yolk–shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. J. Am. Chem. Soc. 2012, 134, 14345–14348.
Zeng, M.; Chai, Z. G.; Deng, X.; Li, Q.; Feng, S. Q.; Wang, J.; Xu, D. S. Core–shell CdS@ZIF-8 structures for improved selectivity in photocatalytic H2 generation from formic acid. Nano Res. 2016, 9, 2729–2734.
Zhao, M. T.; Deng, K.; He, L. C.; Liu, Y.; Li, G. D.; Zhao, H. J.; Tang, Z. Y. Core–shell palladium nanoparticle@metalorganic frameworks as multifunctional catalysts for cascade reactions. J. Am. Chem. Soc. 2014, 136, 1738–1741.
Na, K.; Choi, K. M.; Yaghi, O. M.; Somorjai, G. A. Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. Nano Lett. 2014, 14, 5979–5983.
Zhang, W. N.; Lu, G.; Cui, C. L.; Liu, Y. Y.; Li, S. Z.; Yan, W. J.; Xing, C.; Chi, Y. R.; Yang, Y. H.; Huo, F. W. A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles. Adv. Mater. 2014, 26, 4056–4060.
Zhang, W. N.; Liu, Y. Y.; Lu, G.; Wang, Y.; Li, S. Z.; Cui, C. L.; Wu, J.; Xu, Z. L.; Tian, D. B.; Huang, W. et al. Mesoporous metal-organic frameworks with size-, shape-, and space-distribution-controlled pore structure. Adv. Mater. 2015, 27, 2923–2929.
Huang, Y. B.; Shen, M.; Wang, X. S.; Shi, P. C.; Li, H. F.; Cao, R. Hierarchically micro-and mesoporous metal-organic framework-supported alloy nanocrystals as bifunctional catalysts: Toward cooperative catalysis. J. Catal. 2015, 330, 452–457.
Zhang, Z. C.; Chen, Y. F.; He, S.; Zhang, J. C.; Xu, X. B.; Yang, Y.; Nosheen, F.; Saleem, F.; He, W.; Wang, X. Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions. Angew. Chem., Int. Ed. 2014, 53, 12517–12521.
Liu, W.; Huang, J.; Yang, Q.; Wang, S.; Sun, X.; Zhang, W.; Liu, J.; Huo, F. Multi-shelled hollow metal-organic frameworks. Angew. Chem., Int. Ed. 2017, 129, 5604–5608.
Xu, X. B.; Lu, Y.; Yang, Y.; Nosheen, F.; Wang, X. Tuning the growth of metal-organic framework nanocrystals by using polyoxometalates as coordination modulators. Sci. China Mater. 2015, 58, 370–377.
Zhang, Z. C.; Chen, Y. F.; Xu, X. B.; Zhang, J. C.; Xiang, G. L.; He, W.; Wang, X. Well-defined metal-organic framework hollow nanocages. Angew. Chem., Int. Ed. 2014, 53, 429–433.
Ni, Z.; Masel, R. I. Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2006, 128, 12394–12395.
Rieter, W. J.; Taylor, K. M. L.; Lin, W. B. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. J. Am. Chem. Soc. 2007, 129, 9852–9853.
Tsuruoka, T.; Furukawa, S.; Takashima, Y.; Yoshida, K.; Isoda, S.; Kitagawa, S. Nanoporousnanorods fabricated by coordination modulation and oriented attachment growth. Angew. Chem., Int. Ed. 2009, 48, 4739–4743.
Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chem. —Eur. J. 2011, 17, 6643–6651.
Diring, S.; Furukawa, S.; Takashima, Y.; Tsuruoka, T.; Kitagawa, S. Controlled multiscale synthesis of porous coordination polymer in nano/micro regimes. Chem. Mater. 2010, 22, 4531–4538.
Lu, G.; Cui, C. L.; Zhang, W. N.; Liu, Y. Y.; Huo, F. W. Synthesis and self-assembly of monodispersed metal-organic framework microcrystals. Chem. —Asian J. 2013, 8, 69–72.
Cravillon, J.; Münzer, S.; Lohmeier, S. J.; Feldhoff, A.; Huber, K.; Wiebcke, M. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeoliticimidazolate framework. Chem. Mater. 2009, 21, 1410–1412.
Li, Y. S.; Bux, H.; Feldhoff, A.; Li, G. L.; Yang, W. S.; Caro, J. Controllable synthesis of metal-organic frameworks: From MOFnanorods to oriented MOF membranes. Adv. Mater. 2010, 22, 3322–3326.
Sindoro, M.; Yanai, N.; Jee, A. Y.; Granick, S. Colloidalsized metal-organic frameworks: Synthesis and applications. Acc. Chem. Res. 2014, 47, 459–469.
Wu, Y. E.; Wang, D. S.; Li, Y. D. Understanding of the major reactions in solution synthesis of functional nanomaterials. Sci. China Mater. 2016, 59, 938–996.
Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.
Garibay, S. J.; Cohen, S. M. Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chem. Commun. 2010, 46, 7700–7702.
Wißmann, G.; Schaate, A.; Lilienthal, S.; Bremer, I.; Schneider, A. M.; Behrens, P. Modulated synthesis of Zr-fumarate MOF. Micropor. Mesopor. Mater. 2012, 152, 64–70.
Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. High-throughput synthesis of zeoliticimidazolate frameworks and application to CO2 capture. Science 2008, 319, 939–943.
Jiang, H. L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. J. Am. Chem. Soc. 2009, 131, 11302–11303.