AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Low-cost disordered carbons for Li/S batteries: A high-performance carbon with dual porosity derived from cherry pits

Celia Hernández-Rentero1Rafael Córdoba1Noelia Moreno1Alvaro Caballero1Julian Morales1( )Mara Olivares-Marín2Vicente Gómez-Serrano2
Dpto. Química Inorgánica e Ingeniería QuímicaInstituto de Química Fina y NanoquímicaUniversidad de Córdoba14071Córdoba, Spain
Dpto. Química InorgánicaFacultad de CienciasUniversidad de Extremadura06006Badajoz, Spain
Show Author Information

Graphical Abstract

Abstract

A micro- and mesoporous carbon obtained from cherry pit waste and activated with H3PO4 acid has been studied as the sulfur host for Li/S batteries. The carbon has a high specific surface area of 1, 662 m2·g–1 (SBET) and micropore and mesopore volumes of 0.57 and 0.40 cm3·g–1, respectively. The S/C composite, with a sulfur content of 57% deposited by the disproportionate reaction of a S2O32- solution in an acid medium without an additional heating step above the S melting point, delivers an initial specific capacity of 1, 148 mAh·g–1 at a current of C/16. It also has a high capacity retention of 915 mAh·g–1 after 100 cycles and a Coulombic efficiency close to 100%. The good performance of the composite was also observed under higher current rates and long-term cycling tests. The capacities delivered by the cell after 200 cycles were 707 and 410 mAh·g–1 at C/2 and 1C (1C = 1, 675 mA·g–1), respectively, maintaining the high Coulombic efficiency. The overall electrochemical response of this carbon as the sulfur matrix is among the best reported so far among the other biomass-derived carbons, probably because of the micro- and mesopore system formed upon activation.

References

1

Bresser, D.; Passerini, S.; Scrosati, B. Recent progress and remaining challenges in sulfur-based lithium secondary batteries—A review. Chem. Commun. 2013, 49, 10545–10562.

2

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium–sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

3

Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

4

Thomas, B. N.; George, S. C. Production of activated carbon from natural sources. Trends in Green Chem. 2015, 1, DOI: 10.21767/2471-9889.100007.

5

Xing, W.; Xue, J. S.; Dahn, J. R. Optimizing pyrolysis of sugar carbons for use as anode materials in lithium-ion batteries. J. Electrochem. Soc. 1996, 143, 3046–3052.

6

Peled, E.; Eshkenazi, V.; Rosenberg, Y. Study of lithium insertion in hard carbon made from cotton wool. J. Power Sources 1998, 76, 153–158.

7

Fey, G. T. K.; Chen, C. L. High-capacity carbons for lithium-ion batteries prepared from rice husk. J. Power Sources 2001, 97–98, 47–51.

8

Zhang, F.; Wang, K. X.; Li, G. D.; Chen, J. S. Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance. Electrochem. Commun. 2009, 11, 130–133.

9

Fey, G. T. K.; Lee, D. C.; Lin, Y. Y.; Kumar, T. P. High- capacity disordered carbons derived from peanut shells as lithium-intercalating anode materials. Synthetic Metals 2003, 139, 71–80.

10

Hwang, Y. J.; Jeong, S. K.; Nahm, K. S.; Shin, J. S.; Stephan, A. M. Pyrolytic carbon derived from coffee shells as anode materials for lithium batteries. J. Phys. Chem. Solids 2007, 68, 182–188.

11

Stephan, A. M.; Kumar, T. P.; Ramesh, R.; Thomas, S.; Jeong, S. K.; Nahm, K. S. Pyrolitic carbon from biomass precursors as anode materials for lithium batteries. Mater. Sci. Eng. : A. 2006, 430, 132–137.

12

Wu, X. -L.; Chen, L. -L.; Xin, S.; Yin, Y. -X.; Guo, Y. -G.; Kong, Q. -S.; Xia, Y. -Z. Preparation and Li storage properties of hierarchical porous carbon fibers derived from alginic acid. ChemSusChem 2010, 3, 703–707.

13

Arrebola, J. C.; Caballero, A.; Hernán, L.; Morales, J.; Olivares-Martín, M.; Gómez-Serrano, V. Improving the performance of biomass-derived carbons in Li-ion batteries by controlling the lithium insertion process. J. Electrochem. Soc. 2010, 157, A791–A797.

14

Caballero, A.; Hernán, L.; Morales, J. Limitations of disordered carbons obtained from biomass as anodes for real lithium-ion batteries. ChemSusChem 2011, 4, 658–663.

15

Moreno, N.; Caballero, A.; Hernán, L.; Morales, J. Lithium– sulfur batteries with activated carbons derived from olive stones. Carbon 2014, 70, 241–248.

16

Zhang, J.; Xiang, J. Y.; Dong, Z. M.; Liu, Y.; Wu, Y. S.; Xu, C. M.; Du, G. H. Biomass derived activated carbon with 3D connected architecture for rechargeable lithium−sulfur batteries. Electrochim. Acta 2014, 116, 146–151.

17

Li, J.; Qin, F. R.; Zhang, L. Y.; Zhang, K.; Li, Q.; Lai, Y. Q.; Zhang, Z. A.; Fang, J. Mesoporous carbon from biomass: One-pot synthesis and application for Li–S batteries. J. Mater. Chem. A 2014, 2, 13916–13922.

18

Zhang, J. W.; Cai, Y. R.; Zhong, Q. W.; Lai, D. Z.; Yao, J. M. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium–sulfur batteries. Nanoscale 2015, 7, 17791–17797.

19

Gu, X. X.; Wang, Y. Z.; Lai, C.; Qiu, J. X.; Li, S.; Hou, Y. L.; Martens, W.; Mahmood, N.; Zhang, S. Q. Microporous bamboo biochar for lithium-sulfur batteries. Nano Res. 2015, 8, 129–139.

20

Cheng, Y. M.; Ji, S. M.; Xu, X. J.; Liu, J. Wheat straw carbon matrix wrapped sulfur composites as a superior cathode for Li–S batteries. RSC Adv. 2015, 5, 100089–100096.

21

Schipper, F.; Vizintin, A.; Ren, J. W.; Dominko, R.; Fellinger, T. P. Biomass-derived heteroatom-doped carbon aerogels from a salt melt sol–gel synthesis and their performance in Li–S batteries. ChemSusChem 2015, 8, 3077–3083.

22

Guo, J. X.; Zhang, J.; Jiang, F.; Zhao, S. H.; Su, Q. M.; Du, G. H. Microporous carbon nanosheets derived from corncobs for lithium–sulfur batteries. Electrochim. Acta 2015, 176, 853–860.

23

Geng, Z.; Xiao, Q. F.; Wang, D. B.; Yi, G. H.; Xu, Z. G.; Li, B.; Zhang, C. M. Improved electrochemical performance of biomass-derived nanoporous carbon/sulfur composites cathode for lithium-sulfur batteries by nitrogen doping. Electrochim. Acta 2016, 202, 131–139.

24

Sun, Z. J.; Wang, S. J.; Yan, L. L.; Xiao, M.; Han, D. M.; Meng, Y. Z. Mesoporous carbon materials prepared from litchi shell as sulfur encapsulator for lithium-sulfur battery application. J. Power Sources 2016, 324, 547–555.

25

Raja, M.; Angulakshmi, N.; Stephan, A. M. Sisal-derived activated carbons for cost-effective lithium–sulfur batteries. RSC Adv. 2016, 6, 13772–13779.

26

Yuan, G. H.; Yin, F. X.; Zhao, Y.; Bakenov, Z.; Wang, G. K.; Zhang, Y. G. Corn stalk-derived activated carbon with a stacking sheet-like structure as sulfur cathode supporter for lithium/sulfur batteries. Ionics 2016, 22, 63–69.

27

Balakumar, K.; Sathish, R.; Kalaiselvi, N. Exploration of microporous bio-carbon scaffold for efficient utilization of sulfur in lithium-sulfur system. Electrochimi. Acta 2016, 209, 171–182.

28

Chen, F.; Yang, J.; Bai, T.; Long, B.; Zhou, X. Y. Biomass waste-derived honeycomb-like nitrogen and oxygen dual- doped porous carbon for high performance lithium-sulfur batteries. Electrochim. Acta 2016, 192, 99–109.

29

Wu, H. L.; Mou, J. R.; Zhou, L.; Zheng, Q. J.; Jiang, N.; Lin, D. M. Cloud cap-like, hierarchically porous carbon derived from mushroom as an excellent host cathode for high performance lithium-sulfur batteries. Electrochim. Acta 2016, 212, 1021–1030.

30

Li, Y. Y.; Wang, L.; Gao, B.; Li, X. X.; Cai, Q. F.; Li, Q. W.; Peng, X.; Huo, K. F.; Chu, P. K. Hierarchical porous carbon materials derived from self-template bamboo leaves for lithium–sulfur batteries. Electrochim. Acta 2017, 229, 352–360.

31

Xiang, M. W.; Wang, Y.; Wu, J. H.; Guo, Y.; Wu, H.; Zhang, Y.; Liu, H. Natural silk cocoon derived nitrogen-doped porous carbon nanosheets for high performance lithium- sulfur batteries. Electrochim. Acta 2017, 227, 7–16.

32

Zhu, Y.; Xu, G. Y.; Zhang, X. L.; Wang, S. J.; Li, C.; Wang, G. X. Hierarchical porous carbon derived from soybean hulls as a cathode matrix for lithium-sulfur batteries. J. Alloys Compd. 2017, 695, 2246–2252.

33

Yu, Q. H.; Lu, Y.; Peng, T.; Hou, X. Y.; Luo, R. J.; Wang, Y.; Yan, H. L.; Liu, X. M.; Kim, J. K.; Luo, Y. S. Construction of tubular polypyrrole-wrapped biomass-derived carbon nanospheres as cathode materials for lithium–sulfur batteries. J. Phys. D: Appl. Phys. 2017, 50, 115002.

34

Ding, N.; Chien, S. W.; Hor, T. S. A.; Liu, Z. L.; Zong, Y. Key parameters in design of lithium sulfur batteries. J. Power Sources 2014, 269, 111–116.

35

Lussier, M. G.; Shull, J. C.; Miller, D. J. Activated carbon from cherry stones. Carbon 1994, 32, 1493–1498.

36

Olivares-Marín, M.; Del Prete, V.; Garcia-Moruno, E.; Fernández-González, C.; Macías-García, A.; Gómez-Serrano, V. The development of an activated carbon from cherry stones and its use in the removal of ochratoxin A from red wine. Food Control 2009, 20, 298–303.

37

Olivares-Marín, M.; Fernández, J. A.; Lázaro, M. J.; Fernández-González, C.; Macías-García, A.; Gómez-Serrano, V.; Stoeckli, F.; Centeno, T. A. Cherry stones as precursor of activated carbons for supercapacitors. Mater. Chem. Phys. 2009, 114, 323–327.

38

Caballero, A.; Hernán, L.; Morales, J.; Olivares-Marín, M.; Gómez-Serrano, V. Suppressing irreversible capacity in low cost disordered carbons for Li-ion batterie. Electrochem. Solid-State Lett. 2009, 12, A167–A170.

39

Olivares-Marín, M.; Fernández-González, C.; Macías-García, A.; Gómez-Serrano, V. Porous structure of activated carbon prepared from cherry stones by chemical activation with phosphoric acid. Energy Fuels 2007, 21, 2942–2949.

40

Dubinin, M. M. Physical adsorption of gases and vapors in micropores. In Progress in Surface and Membrane Science; Cadenhead, D. A.; Danielli, J. F.; Rosenberg, M. D., Eds.; Academic Press: New York, 1975; Vol. 9, pp 1–70.

41

Kim, J.; Lee, D. J.; Jung, H. G.; Sun, Y. K.; Hassoun, J.; Scrosati, B. An advanced lithium-sulfur battery. Adv. Funct. Mater. 2013, 23, 1076–1080.

42

Moreno, N.; Caballero, A.; Hernan, L.; Morales, J.; Canales- Vázquez, J. Ordered mesoporous carbons obtained by a simple soft template method as sulfur immobilizers for lithium–sulfur cells. Phys. Chem. Chem. Phys. 2014, 16, 17332–17340.

43

Olivares-Marin, M. Preparation and characterization of active carbons from agroindustrial wastes. Ph. D. Dissertation, University of Extremadura, 2007.

44

Wang, Z. Y.; Dong, Y. F.; Li, H. J.; Zhao, Z. B.; Wu, H. B.; Hao, C.; Liu, S. H.; Qiu, J. S.; Lou, X. W. Enhancing lithium- sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 2014, 5, 5002.

45

Zhou, G. M.; Paek, E.; Hwang, G. S.; Manthiram, A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 2015, 6, 7760.

46

Zhou, G. M.; Yin, L. C.; Wang, D. W.; Li, L.; Pei, S. F.; Gentle, I. R.; Li, F.; Cheng, H. M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries. ACS Nano 2013, 7, 5367–5375.

47

Xu, J. T.; Shui, J. L.; Wang, J. L.; Wang, M.; Liu, H. K.; Dou, S. X.; Jeon, I. Y.; Seo, J. M.; Baek, J. B.; Dai, L. M. Sulfur–graphene nanostructured cathodes via ball-milling for high-performance lithium–sulfur batteries. ACS Nano 2014, 8, 10920–10930.

48

Park, M. S.; Yu, J. S.; Kim, K. J.; Jeong, G.; Kim, J. H.; Jo, Y. N.; Hwang, U.; Kang, S.; Woo, T.; Kim, Y. J. One-step synthesis of a sulfur-impregnated graphene cathode for lithium–sulfur batteries. Phys. Chem. Chem. Phys. 2012, 14, 6796–6804.

49

Song, M. K.; Cairns, E. J.; Zhang, Y. G. Lithium/sulfur batteries with high specific energy: Old challenges and new opportunities. Nanoscale 2013, 5, 2186–2204.

50

Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

51

Li, Z.; Huang, Y. M.; Yuan, L. X.; Hao, Z. X.; Huang, Y. H. Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon 2015, 92, 41–63.

52

Pope, M. A.; Aksay, I. A. Structural design of cathodes for Li-S batteries. Adv. Energy Mater. 2015, 5, 1500124.

53

Wang, J. L.; He, Y. S.; Yang, J. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries. Adv. Mater. 2015, 27, 569–575.

54

Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium-sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980–2006.

55

Rosenman, A.; Markevich, E.; Salitra, G.; Aurbach, D.; Garsuch, A.; Chesneau, F. F. Review on Li-sulfur battery systems: An integral perspective. Adv. Energy Mater. 2015, 5, 1500212.

56

Urbonaite, S.; Poux, T.; Novák, P. Progress towards commercially viable Li-S battery cells. Adv. Energy Mater. 2015, 5, 1500118.

57

Buonomenna, M. G.; Bae, J. Lithium-sulfur batteries: Overview and advances. Nanosci. Nanotech. -Asia 2016, 6, 28–48.

58

Li, Z.; Yuan, L. X.; Yi, Z. Q.; Sun, Y. M.; Liu, Y.; Jiang, Y.; Shen, Y.; Xin, Y.; Zhang, Z. L.; Huang, Y. H. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv. Energy Mater. 2014, 4, 1301473.

59

Xin, S.; Gu, L.; Zhao, N. H.; Yin, Y. X.; Zhou, L. J.; Guo, Y. G.; Wan, L. J. Smaller sulfur molecules promise better lithium–sulfur batteries. J. Am. Chem. Soc. 2012, 134, 18510–18513.

Nano Research
Pages 89-100
Cite this article:
Hernández-Rentero C, Córdoba R, Moreno N, et al. Low-cost disordered carbons for Li/S batteries: A high-performance carbon with dual porosity derived from cherry pits. Nano Research, 2018, 11(1): 89-100. https://doi.org/10.1007/s12274-017-1608-1

677

Views

90

Crossref

N/A

Web of Science

90

Scopus

5

CSCD

Altmetrics

Received: 14 December 2016
Revised: 22 March 2017
Accepted: 27 March 2017
Published: 06 June 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return