AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hybridized electronic states between CdSe nanoparticles and conjugated organic ligands: A theoretical and ultrafast photo-excited carrier dynamics study

Tersilla Virgili1( )Arrigo Calzolari2Inma Suárez López1Alice Ruini2,3Alessandra Catellani2Barbara Vercelli4Francesco Tassone5( )
IFN –CNRc\o Dipartimento di Fisica Politecnico di Milano20132Milano, Italy
Istituto Nanoscienze CNR-NANO-S3Via Campi 213/AI-41125ModenaItaly
Dipartimento di Scienze FisicheInformatiche e MatematicheUniversità di Modena e Reggio EmiliaVia Campi, 213/a, I-41125, ModenaItaly
Istituto di Chimica della Materia Condensata e di Tecnologie per l'EnergiaICMATE-CNR SS di MilanoVia Cozzi 5320125Milano, Italy
Center for Nano Science and Technology @PolimiIstituto Italiano di TecnologiaVia Pascoli 70/320133Milano, Italy
Show Author Information

Graphical Abstract

Abstract

Formation of densely packed thin films of semiconductor nanocrystals is advantageous for the exploitation of their unique optoelectronic properties for real-world applications. Here we investigate the fundamental role of the structure of the bridging ligand on the optoelectronic properties of the resulting hybrid film. In particular, we considered hybrid films formed using the same CdSe nanocrystals and two organic ligands that have the same bidentate dithiocarbamate binding moiety, but differ in their bridging structures, one bridged by ethylene, the other by phenylene that exhibits conjugation. Based on the results of photo-excited carrier dynamics experiments combined with theoretical calculations on the electronic states of bridged CdSe layers, we show that only the phenylene-based ligand presents a strong hybridization of the molecular HOMO state with CdSe layers, that is a marker of formation of an effective bridge. We argue that this hybridization spread favors the hopping of photo-excited carriers between nanocrystals, which may explain the reported larger photo-currents in phenylene-based hybrid films than those observed in ethylene-based ones.

Electronic Supplementary Material

Download File(s)
nr-11-1-142_ESM.pdf (1 MB)

References

1

Querner, C.; Reiss, P.; Sadki, S.; Zagorska, M.; Pron, A. Size and ligand effects on the electrochemical and spectro- electrochemical responses of CdSe nanocrystals. Phys. Chem. Chem. Phys. 2005, 7, 3204–3209.

2

Kalyuzhny, G.; Murray, R. W. Ligand effects on optical properties of CdSe nanocrystals. J. Phys. Chem. B 2005, 109, 7012–7021.

3

Nguyen Truong, N. T.; Ngoc Nguyen, T. P.; Park, C. Structural and optoelectronic properties of CdSetetrapod nanocrystals for bulk heterojunction solar cell applications. Int. J. Photoenergy 2013, 2013, Article ID 146582.

4

Zotti, G.; Vercelli, B.; Berlin, A.; Virgili, T. Multilayers of CdSenanocrystals and Bis(dithiocarbamate) linkers displaying record photoconduction. J. Phys. Chem. C 2012, 116, 25689– 25693.

5

Virgili, T.; Calzolari, A.; Suárez López, I.; Vercelli, B.; Zotti, G.; Catellani, A.; Ruini, A.; Tassone, F. Charge separation in the hybrid CdSenanocrystal–organic interface: Role of the ligands studied by ultrafast spectroscopy and density functional theory. J. Phys. Chem. C 2013, 117, 5969–5974.

6

Virgili, T.; Suárez López, I.; Vercelli, B.; Angella, G.; Zotti, G.; Cabanillas-Gonzalez, J.; Granados, D.; Luer, L.; Wannemacher, R.; Tassone, F. Spectroscopic signature of trap states in assembled CdSenanocrystal hybrid films. J. Phys. Chem. C 2012, 116, 16259–16263.

7

Hao, E. C.; Lian, T. Q. Layer-by-layer assembly of CdSe nanoparticles based on hydrogen bonding. Langmuir 2000, 16, 7879–7881.

8

Constantine, C. A.; Gattás-Asfura, K. M.; Mello, S. V.; Crespo, G.; Rastogi, V.; Cheng, T. C.; DeFrank, J. J.; Leblanc, R. M. Layer-by-layer films of chitosan, organophosphorus hydrolase and thioglycolic acid-capped CdSe quantum dots for the detection of paraoxon. J. Phys. Chem. B 2003, 107, 13762–13764.

9

Zotti, G.; Vercelli, B.; Berlin, A.; Chin, P. T. K.; Giovanella, U. Self-assembled structures of semiconductor nanocrystals and polymers for photovoltaics. 1. CdSenanocrystal-polymer multilayers. Optical, electrochemical, photoelectrochemical and photoconductive properties. Chem. Mater. 2009, 21, 2258–2271.

10

Zotti, G.; Vercelli, B.; Berlin, A.; Pasini, M.; Nelson, T. L.; McCullough, R. D.; Virgili, T. Self-assembled structures of semiconductor nanocrystals and polymers for photovoltaics. 2. Multilayers of CdSe nanocrystals and oligo(poly)thiophene- based molecules. Optical, electrochemical, photoelectrochemical, and photoconductive properties. Chem. Mater. 2010, 22, 1521–1532.

11

Liang, Z. Q.; Dzienis, K. L.; Xu, J.; Wang, Q. Covalent layer-by-layer assembly of conjugated polymers and CdSe nanoparticles: Multilayer structure and photovoltaic properties. Adv. Funct. Mater. 2006, 16, 542–548.

12

Kim, D.; Okahara, S.; Shimura, K.; Nakayama, M. Layer- by-layer assembly of colloidal CdS and ZnS-CdSquantum dots and improvement of their photoluminescence properties. J. Phys. Chem. C 2009, 113, 7015–7018.

13

Vercelli, B.; Angella, G.; Virgili, T.; Suárez López, I.; Pasini, M. Photo-physical behaviour of CdSe nanocrystals/ bis(dithiocarbamate) linker multilayered hybrid systems. J. Nanosci. Nanotechnol. 2015, 15, 3540–3544.

14

Cass, L. C.; Swenson, N. K.; Weiss, E. A. Electronic and vibrational structure of complexes of tetracyanoquinodimethane with cadmium chalcogenide quantum dots. J. Phys. Chem. C 2014, 118, 18263–18270.

15

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: Amodular and open-source software project for quantum simulations of materials. J. Phys. : Condens. Matter 2009, 21, 395502.

16

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865– 3868.

17

Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

18

Calzolari, A.; Ruini, A.; Catellani, A. Surface effects on catechol/semiconductor interfaces. J. Phys. Chem. C 2012, 116, 17158–17163.

19

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

20

Morris-Cohen, A. J.; Peterson, M. D.; Frederick, M. T.; Kamm, J. M.; Weiss, E. A. Evidence for a through-space pathway for electron transfer from quantum dots to carboxylate-functionalized viologens. J. Phys. Chem. Lett. 2012, 3, 2840–2844.

21

Frederick, M. T.; Amin, V. A.; Swenson, N. K.; Ho, A. Y.; Weiss, E. A. Control of exciton confinement in quantum dot-organic complexes through energetic alignment of interfacial orbitals. Nano Lett. 2013, 13, 287–292.

22

Frederick, M. T.; Weiss, E. A. Relaxation of exciton confinement in CdSequantum dots by modification with a conjugated dithiocarbamate ligand. ACS Nano 2010, 4, 3195–3200.

23

Klimov, V. I. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 2007, 58, 635–673.

24

Kriegel, I.; Scotognella, F.; Soavi, G.; Brescia, R.; Rodríguez- Fernández, J.; Feldmann, J.; Lanzani, G.; Tassone, F. Delayed electron relaxation in CdTenanorods studied by spectral analysis of the ultrafast transient absorption. Chem. Phys. 2016, 471, 39–45.

25

Malko, A. V.; Mikhailovsky, A. A.; Petruska, M. A.; Hollingsworth, J. A.; Klimov, V. I. Interplay between optical gain and photoinduced absorption in CdSenanocrystals. J. Phys. Chem. B 2004, 108, 5250–5255.

26

Knowles, K. E.; Frederick, M. T.; Tice, D. B.; Morris-Cohen, A. J.; Weiss, E. A. Colloidal quantum dots: Think outside the (Particle-in-a-)box. J. Phys. Chem. Lett. 2012, 3, 18–26.

27

Azpiroz, J. M.; De Angelis, F. Ligand induced spectral changes in CdSequantum dots. ACS Appl. Mater. Interfaces 2015, 7, 19736–19745.

28

Frederick, M. T.; Amin, V. A.; Cass, L. C.; Weiss, E. A. A molecule to detect and perturb the confinement of charge carriers in quantum dots. Nano Lett. 2011, 11, 5455–5460.

Nano Research
Pages 142-150
Cite this article:
Virgili T, Calzolari A, López IS, et al. Hybridized electronic states between CdSe nanoparticles and conjugated organic ligands: A theoretical and ultrafast photo-excited carrier dynamics study. Nano Research, 2018, 11(1): 142-150. https://doi.org/10.1007/s12274-017-1613-4

672

Views

4

Crossref

N/A

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 23 December 2016
Revised: 07 April 2017
Accepted: 09 April 2017
Published: 02 August 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return