Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Formation of densely packed thin films of semiconductor nanocrystals is advantageous for the exploitation of their unique optoelectronic properties for real-world applications. Here we investigate the fundamental role of the structure of the bridging ligand on the optoelectronic properties of the resulting hybrid film. In particular, we considered hybrid films formed using the same CdSe nanocrystals and two organic ligands that have the same bidentate dithiocarbamate binding moiety, but differ in their bridging structures, one bridged by ethylene, the other by phenylene that exhibits conjugation. Based on the results of photo-excited carrier dynamics experiments combined with theoretical calculations on the electronic states of bridged CdSe layers, we show that only the phenylene-based ligand presents a strong hybridization of the molecular HOMO state with CdSe layers, that is a marker of formation of an effective bridge. We argue that this hybridization spread favors the hopping of photo-excited carriers between nanocrystals, which may explain the reported larger photo-currents in phenylene-based hybrid films than those observed in ethylene-based ones.
Querner, C.; Reiss, P.; Sadki, S.; Zagorska, M.; Pron, A. Size and ligand effects on the electrochemical and spectro- electrochemical responses of CdSe nanocrystals. Phys. Chem. Chem. Phys. 2005, 7, 3204–3209.
Kalyuzhny, G.; Murray, R. W. Ligand effects on optical properties of CdSe nanocrystals. J. Phys. Chem. B 2005, 109, 7012–7021.
Nguyen Truong, N. T.; Ngoc Nguyen, T. P.; Park, C. Structural and optoelectronic properties of CdSetetrapod nanocrystals for bulk heterojunction solar cell applications. Int. J. Photoenergy 2013, 2013, Article ID 146582.
Zotti, G.; Vercelli, B.; Berlin, A.; Virgili, T. Multilayers of CdSenanocrystals and Bis(dithiocarbamate) linkers displaying record photoconduction. J. Phys. Chem. C 2012, 116, 25689– 25693.
Virgili, T.; Calzolari, A.; Suárez López, I.; Vercelli, B.; Zotti, G.; Catellani, A.; Ruini, A.; Tassone, F. Charge separation in the hybrid CdSenanocrystal–organic interface: Role of the ligands studied by ultrafast spectroscopy and density functional theory. J. Phys. Chem. C 2013, 117, 5969–5974.
Virgili, T.; Suárez López, I.; Vercelli, B.; Angella, G.; Zotti, G.; Cabanillas-Gonzalez, J.; Granados, D.; Luer, L.; Wannemacher, R.; Tassone, F. Spectroscopic signature of trap states in assembled CdSenanocrystal hybrid films. J. Phys. Chem. C 2012, 116, 16259–16263.
Hao, E. C.; Lian, T. Q. Layer-by-layer assembly of CdSe nanoparticles based on hydrogen bonding. Langmuir 2000, 16, 7879–7881.
Constantine, C. A.; Gattás-Asfura, K. M.; Mello, S. V.; Crespo, G.; Rastogi, V.; Cheng, T. C.; DeFrank, J. J.; Leblanc, R. M. Layer-by-layer films of chitosan, organophosphorus hydrolase and thioglycolic acid-capped CdSe quantum dots for the detection of paraoxon. J. Phys. Chem. B 2003, 107, 13762–13764.
Zotti, G.; Vercelli, B.; Berlin, A.; Chin, P. T. K.; Giovanella, U. Self-assembled structures of semiconductor nanocrystals and polymers for photovoltaics. 1. CdSenanocrystal-polymer multilayers. Optical, electrochemical, photoelectrochemical and photoconductive properties. Chem. Mater. 2009, 21, 2258–2271.
Zotti, G.; Vercelli, B.; Berlin, A.; Pasini, M.; Nelson, T. L.; McCullough, R. D.; Virgili, T. Self-assembled structures of semiconductor nanocrystals and polymers for photovoltaics. 2. Multilayers of CdSe nanocrystals and oligo(poly)thiophene- based molecules. Optical, electrochemical, photoelectrochemical, and photoconductive properties. Chem. Mater. 2010, 22, 1521–1532.
Liang, Z. Q.; Dzienis, K. L.; Xu, J.; Wang, Q. Covalent layer-by-layer assembly of conjugated polymers and CdSe nanoparticles: Multilayer structure and photovoltaic properties. Adv. Funct. Mater. 2006, 16, 542–548.
Kim, D.; Okahara, S.; Shimura, K.; Nakayama, M. Layer- by-layer assembly of colloidal CdS and ZnS-CdSquantum dots and improvement of their photoluminescence properties. J. Phys. Chem. C 2009, 113, 7015–7018.
Vercelli, B.; Angella, G.; Virgili, T.; Suárez López, I.; Pasini, M. Photo-physical behaviour of CdSe nanocrystals/ bis(dithiocarbamate) linker multilayered hybrid systems. J. Nanosci. Nanotechnol. 2015, 15, 3540–3544.
Cass, L. C.; Swenson, N. K.; Weiss, E. A. Electronic and vibrational structure of complexes of tetracyanoquinodimethane with cadmium chalcogenide quantum dots. J. Phys. Chem. C 2014, 118, 18263–18270.
Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: Amodular and open-source software project for quantum simulations of materials. J. Phys. : Condens. Matter 2009, 21, 395502.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865– 3868.
Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.
Calzolari, A.; Ruini, A.; Catellani, A. Surface effects on catechol/semiconductor interfaces. J. Phys. Chem. C 2012, 116, 17158–17163.
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.
Morris-Cohen, A. J.; Peterson, M. D.; Frederick, M. T.; Kamm, J. M.; Weiss, E. A. Evidence for a through-space pathway for electron transfer from quantum dots to carboxylate-functionalized viologens. J. Phys. Chem. Lett. 2012, 3, 2840–2844.
Frederick, M. T.; Amin, V. A.; Swenson, N. K.; Ho, A. Y.; Weiss, E. A. Control of exciton confinement in quantum dot-organic complexes through energetic alignment of interfacial orbitals. Nano Lett. 2013, 13, 287–292.
Frederick, M. T.; Weiss, E. A. Relaxation of exciton confinement in CdSequantum dots by modification with a conjugated dithiocarbamate ligand. ACS Nano 2010, 4, 3195–3200.
Klimov, V. I. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 2007, 58, 635–673.
Kriegel, I.; Scotognella, F.; Soavi, G.; Brescia, R.; Rodríguez- Fernández, J.; Feldmann, J.; Lanzani, G.; Tassone, F. Delayed electron relaxation in CdTenanorods studied by spectral analysis of the ultrafast transient absorption. Chem. Phys. 2016, 471, 39–45.
Malko, A. V.; Mikhailovsky, A. A.; Petruska, M. A.; Hollingsworth, J. A.; Klimov, V. I. Interplay between optical gain and photoinduced absorption in CdSenanocrystals. J. Phys. Chem. B 2004, 108, 5250–5255.
Knowles, K. E.; Frederick, M. T.; Tice, D. B.; Morris-Cohen, A. J.; Weiss, E. A. Colloidal quantum dots: Think outside the (Particle-in-a-)box. J. Phys. Chem. Lett. 2012, 3, 18–26.
Azpiroz, J. M.; De Angelis, F. Ligand induced spectral changes in CdSequantum dots. ACS Appl. Mater. Interfaces 2015, 7, 19736–19745.
Frederick, M. T.; Amin, V. A.; Cass, L. C.; Weiss, E. A. A molecule to detect and perturb the confinement of charge carriers in quantum dots. Nano Lett. 2011, 11, 5455–5460.