AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Simultaneous red–green–blue electroluminescent enhancement directed by surface plasmonic "far-field" of facile gold nanospheres

Xiaoyan Wu1,3Yiqi Zhuang1Zhongtao Feng1Xuehong Zhou1Yuzhao Yang3Linlin Liu1( )Zengqi Xie1Xudong Chen3Yuguang Ma1( )
Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou510640China
Key Laboratory for Polymer Composite and Functional Material of Ministry of ChinaSun Yat-sen UniversityGuangzhou510275China
Institute of Fluid PhysicsChina Academy of Engineering PhysicsMianyang621900China
Show Author Information

Graphical Abstract

Abstract

Based on the "far-field" effect of surface plasma resonance, simultaneous red–green–blue electroluminescence enhancement by facile synthesized gold nanospheres were realized in this work, which would be difficult and complex to attain using wavelength-selected localized surface plasma resonance. The plasmonic "far-field" effect can simultaneously enhance the whole emission region in the white light range, because the enhancing regions from blue to red emission are largely overlapped. By doping gold nanospheres embedded in a poly(3, 4-ethylene dioxythiophene): polystyrene sulfonic acid (PEDOT: PSS) layer, yield enhancement is achieved in more than 95% devices with the best enhancing ratio of 60% and the commission International de L'Eclairage (CIE) coordinate is stable at approximately (0.33, 0.36). The plasmonic "far-field" effect requires an ultra-low working concentration of Au NPs in picomolar magnitude, and shows little negative effect on the electronic process and light scattering, which has big potential in realizing highly efficient white organic light emitting diodes.

Electronic Supplementary Material

Download File(s)
nr-11-1-151_ESM.pdf (923.5 KB)

References

1

Ying, L.; Ho, C. -L.; Wu, H. B.; Cao, Y.; Wong, W. -Y. White polymer light-emitting devices for solid-state lighting: Materials, devices, and recent progress. Adv. Mater. 2014, 26, 2459–2473.

2

Wu, H. B.; Zou, J. H.; Liu, F.; Wang, L.; Mikhailovsky, A.; Bazan G. C.; Yang, W.; Cao, Y. Efficient single active layer electrophosphorescent white polymer light-emitting diodes. Adv. Mater. 2008, 20, 696–702.

3

Yang, X. L.; Zhou, G. J.; Wong, W. -Y. Recent design tactics for high performance white polymer light-emitting diodes. J. Mater. Chem. C 2014, 2, 1760–1778.

4

Wang, Q.; Ma, D. G. Management of charges and excitons for high-performance white organic light-emitting diodes. Chem. Soc. Rev. 2010, 39, 2387–2398.

5

Jiang, Z. X.; Zhong, Z. M.; Xue, S. F.; Zhou, Y.; Meng, Y. H.; Hu, Z. H.; Ai, N.; Wang, J. B.; Wang, L.; Peng, J. B. et al. Highly efficient, solution processed electrofluorescent small molecule white organic light-emitting diodes with a hybrid electron injection layer. ACS Appl. Mater. Interfaces 2014, 6, 8345–8352.

6

Vasilopoulou, M.; Douvas, A. M.; Georgiadou, D. G.; Constantoudis, V.; Davazoglou, D.; Kennou, S.; Palilis, L. C.; Daphnomili, D.; Coutsoleos, A. G.; Argitis, P. Large work function shift of organic semiconductors inducing enhanced interfacial electron transfer in organic optoelectronics enabled by porphyrin aggregated nanostructures. Nano Res. 2014, 7, 679–693.

7

Kido, J.; Kimura, M.; Nagai, K. Multilayer white light- emitting organic electroluminescent device. Science 1995, 267, 1332–1334.

8

Xue, S. F.; Yao, L.; Shen, F. Z.; Gu, C.; Wu, H. B.; Ma, Y. G. Highly efficient and fully solution-processed white electroluminescence based on fluorescent small molecules and a polar conjugated polymer as the electron-injection material. Adv. Funct. Mater. 2012, 22, 1092–1097.

9

Yu, L.; Liu, J.; Hu, S. J.; He, R. F.; Yang, W.; Wu, H. B.; Peng, J. B.; Xia, R. D.; Bradley, D. D. C. Red, green, and blue light-emitting polyfluorenes containing a dibenzothiophene- S, S-dioxide unit and efficient high-color-rendering-index white-light-emitting diodes made therefrom. Adv. Funct. Mater. 2013, 23, 4366–4376.

10

Li, Y. C.; Wang, Z. H.; Li, X. L.; Xie, G. Z.; Chen, D. C.; Wang, Y. F.; Lo, C. -C.; Lien, A.; Peng, J. B.; Cao, Y. et al. Highly efficient spiro[fluorene-9, 9'-thioxanthene] core derived blue emitters and fluorescent/phosphorescent hybrid white organic light-emitting diodes. Chem. Mater. 2015, 27, 1100–1109.

11

Zhang, K.; Zhong, C. M.; Liu, S. J.; Liang, A. H.; Dong, S.; Huang, F. High efficiency solution processed inverted white organic light emitting diodes with a cross-linkable amino- functionalized polyfluorene as a cathode interlayer. J. Mater. Chem. C 2014, 2, 3270–3277.

12

Gu, C.; Fei, T.; Lv, Y.; Feng, T.; Xue, S. F.; Lu, D.; Ma, Y. G. Color-stable white electroluminescence based on a cross-linked network film prepared by electrochemical copolymerization. Adv. Mater. 2010, 22, 2702–2705.

13

Gu, C.; Fei, T.; Yao, L.; Lv, Y.; Lu, D.; Ma, Y. G. Multilayer polymer stacking by in situ electrochemical polymerization for color-stable white electroluminescence. Adv. Mater. 2011, 23, 527–530.

14

Qian, L. H.; Mookherjee, R. Convective assembly of linear gold nanoparticle arrays at the micron scale for surface enhanced Raman scattering. Nano Res. 2011, 4, 1117–1128.

15

Zhou, Q.; Yang, Y.; Ni, J.; Li, Z. C.; Zhang, Z. J. Rapid recognition of isomers of monochlorobiphenyls at trace levels by surface-enhanced Raman scattering using Ag nanorods as a substrate. Nano Res. 2010, 3, 423–428.

16

Barnoy, E. A.; Fixler, D.; Popovtzer, R.; Nayhoz, T.; Ray, K. An ultra-sensitive dual-mode imaging system using metal- enhanced fluorescence in solid phantoms. Nano Res. 2015, 8, 3912–3921.

17

Xie, F.; Pang, J. S.; Centeno, A.; Ryan, M. P.; Riley, D. J.; Alford, N. M. Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes. Nano Res. 2013, 6, 496–510.

18

Zhang, B.; Price, J.; Hong, G. S.; Tabakman, S. M.; Wang, H. L.; Jarrell, J. A.; Feng, J.; Utz, P. J.; Dai, H. J. Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence. Nano Res. 2013, 6, 113–120.

19

Au, L.; Chen, Y.; Zhou, F.; Camargo, P. H. C.; Lim, B.; Li, Z. Y.; Ginger, D. S.; Xia, Y. N. Synthesis and optical properties of cubic gold nanoframes. Nano Res. 2008, 1, 441–449.

20

Su, Y. H.; Ke, Y. F.; Cai, S. L.; Yao, Q. Y. Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon- sensitized solar cell. Light: Sci. Appl. 2012, 1, e14.

21

Gu, M.; Li, X. P.; Cao, Y. Y. Optical storage arrays: A perspective for future big data storage. Light: Sci. Appl. 2014, 3, e177.

22

Choi, H.; Ko, S. -J.; Choi, Y.; Joo, P.; Kim, T.; Lee, B. R.; Jung, J. -W.; Choi, H. J.; Cha, M.; Jeong, J. -R. et al. Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nat. Photonics 2013, 7, 732–738.

23

Ko, S. -J.; Choi, H.; Lee, W.; Kim, T.; Lee, B. R.; Jung, J. -W.; Jeong, J. -R.; Song, M. H.; Lee, J. C.; Woo, H. Y. et al. Highly efficient plasmonic organic optoelectronic devices based on a conducting polymer electrode incorporated with silver nanoparticles. Energy Environ. Sci. 2013, 6, 1949–1955.

24

Gu, Y.; Zhang, D. D.; Ou, Q. D.; Deng, Y. H.; Zhu, J. J.; Cheng, L.; Liu, Z.; Lee, S. T.; Li, Y. Q.; Tang, J. X. Light extraction enhancement in organic light-emitting diodes based on localized surface plasmon and light scattering double-effect. J. Mater. Chem. C 2013, 1, 4319–4326.

25

Kim, T.; Kang, H.; Jeong, S.; Kang, D. J.; Lee, C.; Lee, C. -H.; Seo, M. -K.; Lee, J. -Y.; Kim, B. J. Au@polymer core–shell nanoparticles for simultaneously enhancing efficiency and ambient stability of organic optoelectronic devices. ACS Appl. Mater. Interfaces 2014, 6, 16956–16965.

26

Kim, S. H.; Bae, T. -S.; Heo, W.; Joo, T.; Song, K. -D.; Park, H. -G.; Ryu, S. Y. Effects of gold-nanoparticle surface and vertical coverage by conducting polymer between indium tin oxide and the hole transport layer on organic light-emitting diodes. ACS Appl. Mater. Interfaces 2015, 7, 15031–15041.

27

Wu, X. Y.; Liu, L. L.; Choy, W. C. H.; Yu, T. C.; Cai, P.; Gu, Y. J.; Xie, Z. Q.; Zhang, Y. N.; Du, L. Y.; Mo, Y. Q. et al. Substantial performance improvement in inverted polymer light-emitting diodes via surface plasmon resonance induced electrode quenching control. ACS Appl. Mater. Interfaces 2014, 6, 11001–11006.

28

Peng, J. H.; Xu, X. J.; Tian, Y.; Wang, J. S.; Tang, F.; Li, L. D. Improved efficiency in polymer light-emitting diodes using metal-enhanced fluorescence. Appl. Phys. Lett. 2014, 105, 173301.

29

Xiang, C. Y.; Koo, W. H.; So, F.; Sasabe, H.; Kido, J. A systematic study on efficiency enhancements in phosphorescent green, red and blue microcavity organic light emitting devices. Light: Sci. Appl. 2013, 2, e74.

30

Xiao, Y.; Yang, J. P.; Cheng, P. P.; Zhu, J. J.; Xu, Z. Q.; Deng, Y. H.; Lee, S. T.; Li, Y. Q.; Tang, J. X. Surface plasmon-enhanced electroluminescence in organic light- emitting diodes incorporating Au nanoparticles. Appl. Phys. Lett. 2012, 100, 013308.

31

Fujiki, A.; Uemura, T.; Zettsu, N.; Akai-Kasaya, M.; Saito, A.; Kuwahara, Y. Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode. Appl. Phys. Lett. 2010, 96, 043307.

32

Yang, X.; Liu, W. Q.; Chen, H. Z. Recent advances in plasmonic organic photovoltaics. Sci. China Chem. 2015, 58, 210–220.

33

Kumar, A.; Srivastava, R.; Tyagi, P.; Mehta, D. S.; Kamalasanan, M. N. Efficiency enhancement of organic light emitting diode via surface energy transfer between exciton and surface plasmon. Org. Electron. 2012, 13, 159–165.

34

Zhang, D. D.; Wang, R.; Ma, Y. Y.; Wei, H. X.; Ou, Q. D.; Wang, Q. K.; Zhou, L.; Lee, S. T.; Li, Y. Q.; Tang, J. X. Realizing both improved luminance and stability in organic light-emitting devices based on a solution-processed inter- layer composed of MoOx and Au nanoparticles mixture. Org. Electron. 2014, 15, 961–967.

35

Wu, X. Y.; Yang, Y. Z.; Chi, X.; Han, T.; Hanif, M.; Liu, L. L.; Xie, Z. Q.; Chen, X. D.; Ma, Y. G. An ultra-thin gold nanoparticle layer modified cathode for the enhanced performance of polymer light emitting diodes. J. Mater. Chem. C 2015, 3, 9928–9932.

36

Wu, X. Y.; Liu, L. L.; Xie, Z. Q.; Ma, Y. G. Advance in metal-based nanoparticles for the enhanced performance of organic optoelectronics devices. Chem. J. Chin. Univ. 2016, 37, 409–425.

37

Jeong, S. -H.; Choi, H.; Kim, J. Y.; Lee, T. -W. Silver-based nanoparticles for surface plasmon resonance in organic optoelectronics. Part. Part. Syst. Charact. 2015, 32, 164–175.

38

Park, H. -J.; Vak, D.; Noh, Y. -Y.; Lim, B.; Kim, D. -Y. Surface plasmon enhanced photoluminescence of conjugated polymers. Appl. Phys. Lett. 2007, 90, 161107.

39

Hu, J. B.; Yu, Y.; Jiao, B.; Ning, S. Y.; Dong, H.; Hou, X.; Zhang, Z. J.; Wu, Z. X. Realizing improved performance of down-conversion white organic light-emitting diodes by localized surface plasmon resonance effect of Ag nanoparticles. Org. Electron. 2016, 31, 234–239.

40

Zhu, W. Q.; Yu, J. T.; Qian, B. J.; Xiao, T.; Zhai, G. S.; Wei, B. Efficiency improvement in white organic light-emitting devices using simultaneous far- and near-field effects of silver nanoclusters. Synthetic Met. 2016, 220, 621–627.

41

Lu, L. Y.; Luo, Z. Q.; Xu, T.; Yu, L. P. Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano Lett. 2013, 13, 59–64.

42

Li, X. H.; Choy, W. C. H.; Lu, H. F.; Sha, W. E. I.; Ho, A. H. P. Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles. Adv. Funct. Mater. 2013, 23, 2728–2735.

43

Li, X. H.; Ren, X. G.; Xie, F. X.; Zhang, Y. X.; Xu, T. T.; Wei, B. Q.; Choy, W. C. H. High-performance organic solar cells with broadband absorption enhancement and reliable reproducibility enabled by collective plasmonic effects. Adv. Opt. Mater. 2015, 3, 1220–1231.

44

Baek, S. -W.; Park, G.; Noh, J.; Cho, C.; Lee, C. -H.; Seo, M. -K.; Song, H.; Lee, J. -Y. Au@Ag core–shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells. ACS Nano 2014, 8, 3302–3312.

45

Seo, E.; Ko, S. -J.; Min, S. H.; Kim, J. Y.; Kim, B. -S. Plasmonic transition via interparticle coupling of Au@Ag core–shell nanostructures sheathed in double hydrophilic block copolymer for high-performance polymer solar cell. Chem. Mater. 2015, 27, 4789–4798.

46

Wu, X. Y.; Liu, L. L.; Yu, T. C.; Yu, L.; Xie, Z. Q.; Mo, Y. Q.; Xu, S. P.; Ma, Y. G. Gold nanoparticles modified ITO anode for enhanced PLEDs brightness and efficiency. J. Mater. Chem. C 2013, 1, 7020–7025.

47

Wu, X. Y.; Liu, L. L.; Deng, Z. C.; Nian, L.; Zhang, W. Z.; Hu, D. H.; Xie, Z. Q.; Mo, Y. Q.; Ma, Y. G. Efficiency improvement in polymer light-emitting diodes by "far-field" effect of gold nanoparticles. Part. Part. Syst. Charact. 2015, 32, 686–692.

48

Kümmerlen, J.; Letiner, A.; Brunner, H.; Aussenegg, F. R.; Wokaun, A. Enhanced dye fluorescence over silver island films: Analysis of the distance dependence. Mol. Phys. 1993, 80, 1031–1046.

49

Kuhn, H. Classical aspects of energy transfer in molecular systems. J. Chem. Phys. 1970, 53, 101–108.

50

Drexhage, K. H. Influence of a dielectric interface on fluorescence decay time. J. Lumin. 1970, 1–2, 693–701.

Nano Research
Pages 151-162
Cite this article:
Wu X, Zhuang Y, Feng Z, et al. Simultaneous red–green–blue electroluminescent enhancement directed by surface plasmonic "far-field" of facile gold nanospheres. Nano Research, 2018, 11(1): 151-162. https://doi.org/10.1007/s12274-017-1614-3

661

Views

15

Crossref

N/A

Web of Science

14

Scopus

1

CSCD

Altmetrics

Received: 29 December 2016
Revised: 05 April 2017
Accepted: 09 April 2017
Published: 08 June 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return