AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Metal-organic framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as bifunctional catalysts for rechargeable zinc-air batteries

Xuan Wu§Ge Meng§Wenxian LiuTian LiQiu YangXiaoming SunJunfeng Liu( )
State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China

§ Xuan Wu and Ge Meng contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Zinc-air batteries have recently attracted considerable interest owing to the larger storage capacity and lower cost compared to their lithium-ion counterparts. Electrode catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play a critical role in the operation of rechargeable zinc-air batteries. Herein, we report a simple and scalable strategy to fabricate porous carbon polyhedra using Zn-doped Co-based zeolitic imidazolate frameworks (ZnCo-ZIFs) as precursors. Strikingly, Zn doping leads to smaller Co nanoparticles and higher nitrogen content, which in turn enhances the ORR and OER activities of the obtained porous carbon polyhedra. The synergistic effect of the N-doped carbon and cobalt nanoparticles in the composite, the improved conductivity resulting from the high graphitization of carbon, and the large surface area of the porous polyhedral structure resulted in porous carbon polyhedra with excellent ORR and OER electrocatalytic activity in alkaline media. More importantly, air cathodes based on the optimal porous carbon polyhedra further exhibited superior performance to Pt/C catalysts in primary and rechargeable zinc-air batteries.

Electronic Supplementary Material

Download File(s)
nr-11-1-163_ESM.pdf (1.7 MB)

References

1

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

2

Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium-air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203.

3

Lee, J. S.; Tai Kim, S.; Cao, R. G.; Choi, N. S.; Liu, M. L.; Lee, K. T.; Cho, J. Metal-air batteries with high energy density: Li-air versus Zn-air. Adv. Energy Mater. 2011, 1, 34–50.

4

Wang, H. G.; Zhang, X. B. Designing multi-shelled metal oxides: Towards high energy-density lithium-ion batteries. Sci. China Mater. 2016, 59, 521–522.

5

Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275.

6

Zhu, A. L.; Wilkinson, D. P.; Zhang, X.; Xing, Y. L.; Rozhin, A. G.; Kulinich, S. A. Zinc regeneration in rechargeable zinc-air fuel cells—A review. J. Energy Storage 2016, 8, 35–50.

7

Liu, Q.; Wang, Y. B.; Dai, L. M.; Yao, J. N. Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries. Adv. Mater. 2016, 28, 3000–3006.

8

Zang, Y. P.; Zhang, H. M.; Zhang, X.; Liu, R. R.; Liu, S. W.; Wang, G. Z.; Zhang, Y. X.; Zhao, H. J. Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Nano Res. 2016, 9, 2123–2137.

9

Li, X. Z.; Fang, Y. Y.; Lin, X. Q.; Tian, M.; An, X. C.; Fu, Y.; Li, R.; Jin, J.; Ma, J. T. MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: Extraordinary bi-functional electrocatalysts for OER and ORR. J. Mater. Chem. A 2015, 3, 17392–17402.

10

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

11

Su, Y. H.; Zhu, Y. H.; Jiang, H. L.; Shen, J. H.; Yang, X. L.; Zou, W. J.; Chen, J. D.; Li, C. Z. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nanoscale 2014, 6, 15080–15089.

12

Yang, Q.; Liu, W. X.; Wang, B. Q.; Zhang, W. N.; Zeng, X. Q.; Zhang, C.; Qin, Y. J.; Sun, X. M.; Wu, T. P.; Liu, J. F. et al. Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nat. Commun. 2017, 8, 14429.

13

Zhang, Z. C.; Chen, Y. F.; Xu, X. B.; Zhang, J. C.; Xiang, G. L.; He, W.; Wang, X. Well-defined metal-organic framework hollow nanocages. Angew. Chem., Int. Ed. 2014, 53, 429–433.

14

Zhang, Z. C.; Chen, Y. F.; He, S.; Zhang, J. C.; Xu, X. B.; Yang, Y.; Nosheen, F.; Saleem, F.; He, W.; Wang, X. Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions. Angew. Chem. 2014, 126, 12725–12729.

15

Zhang, W. N.; Lu, G.; Cui, C. L.; Liu, Y. Y.; Li, S. Z.; Yan, W. J.; Xing, C.; Chi, Y. R.; Yang, Y. H.; Huo, F. W. A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles. Adv. Mater. 2014, 26, 4056–4060.

16

Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.

17

Li, Z.; Yu, R.; Huang, J. L.; Shi, Y. S.; Zhang, D. Y.; Zhong, X. Y.; Wang, D. S.; Wu, Y. E.; Li, Y. D. Platinum-nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving. Nat. Commun. 2015, 6, 8248.

18

Liu, W. X.; Huang, J. J.; Yang, Q.; Wang, S. J.; Sun, X. M.; Zhang, W. N.; Liu, J. F.; Huo, F. W. Multi-shelled hollow metal-organic frameworks. Angew. Chem. 2017, 56, 5512–5516.

19

Wu, R. B.; Qian, X. K.; Zhou, K.; Wei, J.; Lou, J.; Ajayan, P. M. Porous spinel ZnxCo3–xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 2014, 8, 6297–6303.

20

Xu, X. D.; Cao, R. G.; Jeong, S.; Cho, J. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett. 2012, 12, 4988–4991.

21

Kim, T. K.; Lee, K. J.; Cheon, J. Y.; Lee, J. H.; Joo, S. H.; Moon, H. R. Nanoporous metal oxides with tunable and nanocrystalline frameworks via conversion of metal-organic frameworks. J. Am. Chem. Soc. 2013, 135, 8940–8946.

22

Jiao, L.; Zhou, Y. X.; Jiang, H. -L. Metal-organic framework-based CoP/reduced graphene oxide: High-performance bifunctional electrocatalyst for overall water splitting. Chem. Sci. 2016, 7, 1690–1695.

23

Zhang, P.; Sun, F.; Xiang, Z. H.; Shen, Z. G.; Yun, J.; Cao, D. P. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 442–450.

24

Pandiaraj, S.; Aiyappa, H. B.; Banerjee, R.; Kurungot, S. Post modification of MOF derived carbon via g-C3N4 entrapment for an efficient metal-free oxygen reduction reaction. Chem. Commun. 2014, 50, 3363–3366.

25

Chaikittisilp, W.; Ariga, K.; Yamauchi, Y. A new family of carbon materials: Synthesis of MOF-derived nanoporous carbons and their promising applications. J. Mater. Chem. A 2013, 1, 14–19.

26

Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 2014, 136, 13925–13931.

27

Hou, Y.; Huang, T. Z.; Wen, Z. H.; Mao, S.; Cui, S. M.; Chen, J. H. Metal-organic framework-derived nitrogen-doped core-shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions. Adv. Energy Mater. 2014, 4, 1400337.

28

Xia, W.; Zou, R. Q.; An, L.; Xia, D. G.; Guo, S. J. A metal–organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ. Sci. 2015, 8, 568–576.

29

Zhang, T. Y.; Liu, W. X.; Meng, G.; Yang, Q.; Sun, X. M.; Liu, J. F. Construction of hierarchical copper-based metal-organic framework nanoarrays as functional structured catalysts. ChemCatChem 2017, 9, 1771–1775.

30

Li, J. S.; Chen, Y. Y.; Tang, Y. J.; Li, S. L.; Dong, H. Q.; Li, K.; Han, M.; Lan, Y. -Q.; Bao, J. C.; Dai, Z. H. Metal-organic framework templated nitrogen and sulfur co-doped porous carbons as highly efficient metal-free electrocatalysts for oxygen reduction reactions. J. Mater. Chem. A 2014, 2, 6316–6319.

31

Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

32

Chen, Y. -Z.; Wang, C. M.; Wu, Z. -Y.; Xiong, Y. J.; Xu, Q.; Yu, S. -H.; Jiang, H. -L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.

33

Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

34

Liu, X. J.; Chang, Z.; Luo, L.; Xu, T. H.; Lei, X. D.; Liu, J. F.; Sun, X. M. Hierarchical ZnxCo3–xO4 nanoarrays with high activity for electrocatalytic oxygen evolution. Chem. Mater. 2014, 26, 1889–1895.

35

You, B.; Jiang, N.; Sheng, M. L.; Drisdell, W. S.; Yano, J.; Sun, Y. J. Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal. 2015, 5, 7068–7076.

36

Chen, B. L.; Li, R.; Ma, G. P.; Gou, X. L.; Zhu, Y. Q.; Xia, Y. D. Cobalt sulfide/N, S codoped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions. Nanoscale 2015, 7, 20674–20684.

37

Han, Y. J.; Zhai, J. F.; Zhang, L. L.; Dong, S. J. Direct carbonization of cobalt-doped NH2-MIL-53(Fe) for electrocatalysis of oxygen evolution reaction. Nanoscale 2016, 8, 1033–1039.

38

Zhang, G. J.; Li, C. X.; Liu, J.; Zhou, L.; Liu, R. H.; Han, X.; Huang, H.; Hu, H. L.; Liu, Y.; Kang, Z. H. One-step conversion from metal-organic frameworks to Co3O4@N-doped carbon nanocomposites towards highly efficient oxygen reduction catalysts. J. Mater. Chem. A 2014, 2, 8184–8189.

39

Meng, G.; Yang, Q.; Wang, Y. X.; Sun, X. M.; Liu, J. F. NiCoFe spinel-type oxide nanosheet arrays derived from layered double hydroxides as structured catalysts. RSC Adv. 2014, 4, 57804–57809.

40

Liu, X. J.; Liu, J. F.; Sun, X. M. NiCo2O4@NiO hybrid arrays with improved electrochemical performance for pseudocapacitors. J. Mater. Chem. A 2015, 3, 13900–13905.

41

Zhang, Y.; Cui, B.; Qin, Z. T.; Lin, H.; Li, J. B. Hierarchical wreath-like Au-Co(OH)2 microclusters for water oxidation at neutral pH. Nanoscale 2013, 5, 6826–6833.

42

Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 2009, 19, 2577–2583.

43

Du, G. J.; Liu, X. G.; Zong, Y.; Hor, T. S. A.; Yu, A. S.; Liu, Z. L. Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc-air batteries. Nanoscale 2013, 5, 4657–4661.

44

Chen, Z.; Yu, A. P.; Ahmed, R.; Wang, H. J.; Li, H.; Chen, Z. W. Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery. Electrochim. Acta 2012, 69, 295–300.

45

Prabu, M.; Ketpang, K.; Shanmugam, S. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries. Nanoscale 2014, 6, 3173–3181.

46

Chen, Z.; Yu, A. P.; Higgins, D.; Li, H.; Wang, H. J.; Chen, Z. W. Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application. Nano Lett. 2012, 12, 1946–1952.

47

Qian, Y. H.; Hu, Z. G.; Ge, X. M.; Yang, S. L.; Peng, Y. W.; Kang, Z. X.; Liu, Z. L.; Lee, J. Y.; Zhao, D. A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017, 111, 641–650.

Nano Research
Pages 163-173
Cite this article:
Wu X, Meng G, Liu W, et al. Metal-organic framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as bifunctional catalysts for rechargeable zinc-air batteries. Nano Research, 2018, 11(1): 163-173. https://doi.org/10.1007/s12274-017-1615-2

764

Views

105

Crossref

N/A

Web of Science

102

Scopus

11

CSCD

Altmetrics

Received: 06 January 2017
Revised: 30 March 2017
Accepted: 07 April 2017
Published: 07 July 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return