Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The growth of a Ni(OH)2 coating on conductive carbon substrates is an efficient way to address issues related to their poor conductivity in electrochemical capacitor applications. However, the direct growth of nickel hydroxide coatings on a carbon substrate is challenging, because the surfaces of these systems are not compatible and a preoxidation treatment of the conductive carbon substrate is usually required. Herein, we present a facile preoxidation-free approach to fabricate a uniform Ni(OH)2 coating on carbon nanosheets (CNs) by an ion-exchange reaction to achieve the in situ transformation of a MgO/C composite to a Ni(OH)2/C one. The obtained Ni(OH)2/CNs hybrids possess nanosheet morphology, a large surface area (278 m2/g), and homogeneous elemental distributions. When employed as supercapacitors in a three-electrode configuration, the Ni(OH)2/CNs hybrid achieves a large capacitance of 2, 218 F/g at a current density of 1.0 A/g. Moreover, asymmetric supercapacitors fabricated with the Ni(OH)2/CNs hybrid exhibit superior supercapacitive performances, with a large capacity of 198 F/g, and high energy density of 56.7 Wh/kg at a power density of 4.0 kW/kg. They show excellent cycling stability with 93% capacity retention after 10, 000 cycles, making the Ni(OH)2/CNs hybrid a promising candidate for practical applications in supercapacitor devices.
Wu, H.; Jiang, K.; Gu, S. S.; Yang, H.; Lou, Z.; Chen, D.; Shen, G. Z. Two-dimensional Ni(OH)2 nanoplates for flexible on-chip microsupercapacitors. Nano Res. 2015, 8, 3544–3552.
Hu, Y. T.; Guan, C.; Ke, Q. Q.; Yow, Z. F.; Cheng, C. W.; Wang, J. Hybrid Fe2O3 nanoparticle clusters/rGO paper as an effective negative electrode for flexible supercapacitors. Chem. Mater. 2016, 28, 7296–7303.
Chi, Y. -W.; Hu, C. -C.; Shen, H. -H.; Huang, K. -P. New approach for high-voltage electrical double-layer capacitors using vertical graphene nanowalls with and without nitrogen doping. Nano Lett. 2016, 16, 5719–5727.
Zhao, J.; Lai, H. W.; Lyu, Z. Y.; Jiang, Y. F.; Xie, K.; Wang, X. Z.; Wu, Q.; Yang, L. J.; Jin, Z.; Ma, Y. W. et al. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv. Mater. 2015, 27, 3541–3545.
Xu, Y. X.; Huang, X. Q.; Lin, Z. Y.; Zhong, X.; Huang, Y.; Duan, X. F. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 2013, 6, 65–76.
Liang, D. W.; Wu, S. L.; Liu, J.; Tian, Z. F.; Liang, C. H. Co-doped Ni hydroxide and oxide nanosheet networks: Laser-assisted synthesis, effective doping, and ultrahigh pseudocapacitor performance. J. Mater. Chem. A 2016, 4, 10609–10617.
Liu, X. Y.; Gao, Y. Q.; Yang, G. W. A flexible, transparent and super-long-life supercapacitor based on ultrafine Co3O4 nanocrystal electrodes. Nanoscale 2016, 8, 4227–4235.
Zhu, J. W.; Chen, S.; Zhou, H.; Wang, X. Fabrication of a low defect density graphene-nickel hydroxide nanosheet hybrid with enhanced electrochemical performance. Nano Res. 2012, 5, 11–19.
Le Comte, A.; Brousse, T.; Belanger, D. New generation of hybrid carbon/Ni(OH)2 electrochemical capacitor using functionalized carbon electrode. J. Power Sources 2016, 326, 702–710.
Zhang, C. Q.; Chen, Q. D.; Zhan, H. B. Supercapacitors based on reduced graphene oxide nanofibers supported Ni(OH)2 nanoplates with enhanced electrochemical performance. ACS Appl. Mater. Interfaces 2016, 8, 22977–22987.
Shi, D.; Zhang, L.; Yin, X.; Huang, T. J.; Gong, H. A one step processed advanced interwoven architecture of Ni(OH)2 and Cu nanosheets with ultrahigh supercapacitor performance. J. Mater. Chem. A 2016, 4, 12144–12151.
Wang, R. H.; Jayakumar, A.; Xu, C. H.; Lee, J. -M. Ni(OH)2 nanoflowers/graphene hydrogels: A new assembly for supercapacitors. ACS Sustainable Chem. Eng. 2016, 4, 3736–3742.
Min, S. D.; Zhao, C. J.; Zhang, Z. M.; Chen, G. R.; Qian, X. Z.; Guo, Z. P. Synthesis of Ni(OH)2/RGO pseudocomposite on nickel foam for supercapacitors with superior performance. J. Mater. Chem. A 2015, 3, 3641–3650.
Chen, X.; Long, C. L.; Lin, C. P.; Wei, T.; Yan, J.; Jiang, L. L.; Fan, Z. J. Al and Co co-doped α-Ni(OH)2/graphene hybrid materials with high electrochemical performances for supercapacitors. Electrochim. Acta 2014, 137, 352–358.
Lee, G.; Varanasi, C. V.; Liu, J. Effects of morphology and chemical doping on electrochemical properties of metal hydroxides in pseudocapacitors. Nanoscale 2015, 7, 3181–3188.
Xie, M. J.; Duan, S. Y.; Shen, Y.; Fang, K.; Wang, Y. Z.; Lin, M.; Guo, X. F. In-situ-grown Mg(OH)2-derived hybrid α-Ni(OH)2 for highly stable supercapacitor. ACS Energy Lett. 2016, 1, 814–819.
Ma, X. W.; Li, Y.; Wen, Z. W.; Gao, F. X.; Liang, C. Y.; Che, R. C. Ultrathin β-Ni(OH)2 nanoplates vertically grown on nickel-coated carbon nanotubes as high-performance pseudocapacitor electrode materials. ACS Appl. Mater. Interfaces 2015, 7, 974–979.
Liu, Y. H.; Wang, R. T.; Yan, X. B. Synergistic effect between ultra-small nickel hydroxide nanoparticles and reduced graphene oxide sheets for the application in high-performance asymmetric supercapacitor. Sci. Rep. 2015, 5, 11095.
Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472–7477.
Patil, U.; Lee, S. C.; Kulkarni, S.; Sohn, J. S.; Nam, M. S.; Han, S.; Jun, S. C. Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors. Nanoscale 2015, 7, 6999–7021.
Tang, C.; Wang, H. -S.; Wang, H. -F.; Zhang, Q.; Tian, G. -L.; Nie, J. -Q.; Wei, F. Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater. 2015, 27, 4516–4522.
Li, M. M.; Tang, M. H.; Deng, J.; Wang, Y. Nitrogen-doped flower-like porous carbon materials directed by in situ hydrolysed MgO: Promising support for Ru nanoparticles in catalytic hydrogenations. Nano Res. 2016, 9, 3129–3140.
Li, W.; Xin, L. P.; Xu, X.; Liu, Q. D.; Zhang, M.; Ding, S. J.; Zhao, M. S.; Lou, X. J. Facile synthesis of three-dimensional structured carbon fiber-NiCo2O4-Ni(OH)2 high-performance electrode for pseudocapacitors. Sci. Rep. 2015, 5, 9277.
Xie, M. J.; Yang, J.; Liang, J. Y.; Guo, X. F.; Ding, W. P. In situ hydrothermal deposition as an efficient catalyst supporting method towards low-temperature graphitization of amorphous carbon. Carbon 2014, 77, 215–225.
Yan, J.; Fan, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 2012, 22, 2632–2641.