AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Selenium-functionalized metal-organic frameworks as enzyme mimics

Weiqiang Zhou1,2Hongfeng Li1Bin Xia1Wenlan Ji1Shaobo Ji2Weina Zhang1Wei Huang1( )Fengwei Huo1( )Huaping Xu2( )
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (Nanjing Tech)Nanjing211816China
Key Laboratory of Organic Optoelectronics and Molecular EngineeringDepartment of ChemistryTsinghua UniversityBeijing100084China
Show Author Information

Graphical Abstract

Abstract

The development of artificial enzyme mimics has been rapidly growing in recent years, and it is attracting increasing attention owing to their remarkable advantages over natural enzymes. Herein, we developed a general and facile method to fabricate efficient glutathione peroxidase (GPx) mimics by grafting selenium-containing molecules (phenylselenylbromide, PhSeBr) to a Zr(IV)-based UiO-66-NH2 framework. In the presence of glutathione (GSH) serving as substrate, the fabricated UiO-66-Se catalysts can catalyze the reduction of hydroperoxides. The as-prepared UiO-66-Se systems show good catalytic activity over three cycles. These high-efficiency GPx mimic metal-organic frameworks (MOFs) are endowed with excellent thermal and structural stability, providing a promising avenue for the development of artificial enzyme mimics.

References

1

Gupta, R.; Beg, Q. K.; Lorenz, P. Bacterial alkaline proteases: Molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 2002, 59, 15-32.

2

Betancor, L.; Luckarift, H. R. Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol. 2008, 26, 566-572.

3

Hou, C.; Wang, Y.; Ding, Q. H.; Jiang, L.; Li, M.; Zhu, W. W.; Pan, D.; Zhu, H.; Liu, M. Z. Facile synthesis of enzymeembedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: Mimetic peroxidase properties and colorimetric sensor. Nanoscale 2015, 7, 18770-18779.

4

Huang, Y. Q.; Guan, R.; Huang, M. Z. Study on hydrolysis of macromolecular gelatin with enzymes in combination mode. Chinese J. Polym. Sci. 2004, 22, 599-602.

5

Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B. Industrial biocatalysis today and tomorrow. Nature 2001, 409, 258-268.

6

Reedy, C. J.; Gibney, B. R. Heme protein assemblies. Chem. Rev. 2004, 104, 617-650.

7

Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060-6093.

8

Lin, Y. H.; Ren, J. S.; Qu, X. G. Nano-gold as artificial enzymes: Hidden talents. Adv. Mater. 2014, 26, 4200-4217.

9

Kirby, A. J. Enzyme mechanisms, models, and mimics. Angew. Chem., Int. Ed. 1996, 35, 707-724.

10

Motherwell, W. B.; Bingham, M. J.; Six, Y. Recent progress in the design and synthesis of artificial enzymes. Tetrahedron 2001, 57, 4663-4686.

11

Wulff, G. Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev. 2002, 102, 1-27.

12

Huang, X.; Liu, X. M.; Luo, Q.; Liu, J. Q.; Shen, J. C. Artificial selenoenzymes: Designed and redesigned. Chem. Soc. Rev. 2011, 40, 1171-1184.

13

Barber, J. Photosynthetic energy conversion: Natural and artificial. Chem. Soc. Rev. 2009, 38, 185-196.

14

Dong, Z. Y.; Luo, Q.; Liu, J. Q. Artificial enzymes based on supramolecular scaffolds. Chem. Soc. Rev. 2012, 41, 7890-7908.

15

Su, L. J.; Xiong, Y. H.; Yang, H. G.; Zhang, P.; Ye, F. G. Prussian blue nanoparticles encapsulated inside a metal-organic framework via in situ growth as promising peroxidase mimetics for enzyme inhibitor screening. J. Mater. Chem. B 2016, 4, 128-134.

16

Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206-2210.

17

Tian, J. Q.; Liu, Q.; Asiri, A. M.; Qusti, A. H.; Al-Youbi, A. O.; Sun, X. P. Ultrathin graphitic carbon nitride nanosheets: A novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale 2013, 5, 11604-11609.

18

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577-583.

19

Liu, X. Y.; Wei, W.; Yuan, Q.; Zhang, X.; Li, N.; Du, Y. G.; Ma, G. H.; Yan, C. H.; Ma, D. Apoferritin-CeO2 nano-truffle that has excellent artificial redox enzyme activity. Chem. Commun. 2012, 48, 3155-3157.

20

Wei, H.; Wang, E. K. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem. 2008, 80, 2250-2254.

21

Zhang, X.; Xu, H. P.; Dong, Z. Y.; Wang, Y. P.; Liu, J. Q.; Shen, J. C. Highly efficient dendrimer-based mimic of glutathione peroxidase. J. Am. Chem. Soc. 2004, 126, 10556-10557.

22

Fu, Y.; Chen, J. Y.; Xu, H. P.; Van Oosterwijck, C.; Zhang, X.; Dehaen, W.; Smet, M. Fully-branched hyperbranched polymers with a diselenide core as glutathione peroxidase mimics. Macromol. Rapid Commun. 2012, 33, 798-804.

23

Dong, Z. Y.; Liu, J. Q.; Mao, S. Z.; Huang, X.; Yang, B.; Ren, X. J.; Luo, G. M.; Shen, J. C. Aryl thiol substrate 3-carboxy-4-nitrobenzenethiol strongly stimulating thiol peroxidase activity of glutathione peroxidase mimic 2, 2'-ditellurobis(2-deoxy-β-cyclodextrin). J. Am. Chem. Soc. 2004, 126, 16395-16404.

24

Xiao, R. Q.; Zhou, L. P.; Dong, Z. Y.; Gao, Y. Z.; Liu, J. Q. A photo-responsive catalytic vesicle with GPx activity. Chin. J. Chem. 2014, 32, 37-43.

25

Zou, H. X.; Sun, H. C.; Wang, L.; Zhao, L. L.; Li, J. X.; Dong, Z. Y.; Luo, Q.; Xu, J. Y.; Liu, J. Q. Construction of a smart temperature-responsive GPx mimic based on the self-assembly of supra-amphiphiles. Soft Matter 2016, 12, 1192-1199.

26

Cao, W.; Wang, L.; Xu, H. P. Selenium/tellurium containing polymer materials in nanobiotechnology. Nano Today 2015, 10, 717-736.

27

Xu, H. P.; Cao, W.; Zhang, X. Selenium-containing polymers: Promising biomaterials for controlled release and enzyme mimics. Acc. Chem. Res. 2013, 46, 1647-1658.

28

Wang, X. Y.; Hu, Y. H.; Wei, H. Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front. 2016, 3, 41-60.

29

Lin, Y. H.; Li, Z. H.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis. Biomaterials 2013, 34, 2600-2610.

30

Dai, Z. H.; Liu, S. H.; Bao, J. C.; Ju, H. X. Nanostructured FeS as a mimic peroxidase for biocatalysis and biosensing. Chem. —Eur. J. 2009, 15, 4321-4326.

31

Su, L.; Qin, W. J.; Zhang, H. G.; Rahman, Z. U.; Ren, C. L.; Ma, S. D.; Chen, X. G. The peroxidase/catalase-like activities of MFe2O4 (M = Mg, Ni, Cu) MNPs and their application in colorimetric biosensing of glucose. Biosens. Bioelectron. 2015, 63, 384-391.

32

Zheng, C.; Zheng, A. X.; Liu, B.; Zhang, X. L.; He, Y.; Li, J.; Yang, H. H.; Chen, G. N. One-pot synthesized DNAtemplated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin. Chem. Commun. 2014, 50, 13103-13106.

33

Artiglia, L.; Agnoli, S.; Paganini, M. C.; Cattelan, M.; Granozzi, G. TiO2@CeOx core-shell nanoparticles as artificial enzymes with peroxidase-like activity. ACS Appl. Mater. Interfaces 2014, 6, 20130-20136.

34

Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705-714.

35

Fei, H. H.; Pullen, S.; Wagner, A.; Ott, S.; Cohen, S. M. Functionalization of robust Zr(IV)-based metal-organic framework films via a postsynthetic ligand exchange. Chem. Commun. 2015, 51, 66-69.

36

Taylor-Pashow, K. M. L.; Rocca, J. D.; Xie, Z. G.; Tran, S.; Lin, W. B. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 2009, 131, 14261-14263.

37

Ahnfeldt, T.; Gunzelmann, D.; Loiseau, T.; Hirsemann, D.; Senker, J.; Ferey, G.; Stock, N. Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology. Inorg. Chem. 2009, 48, 3057-3064.

38

Zhou, W. Q.; Zou, B. H.; Zhang, W. N.; Tian, D. B.; Huang, W.; Huo, F. W. Synthesis of stable heterogeneous catalysts by supporting carbon-stabilized palladium nanoparticles on MOFs. Nanoscale 2015, 7, 8720-8724.

39

Kondo, M.; Furukawa, S.; Hirai, K.; Kitagawa, S. Coordinatively immobilized monolayers on porous coordination polymer crystals. Angew. Chem., Int. Ed. 2010, 49, 5327-5330.

40

Wang, Z. Q.; Cohen, S. M. Postsynthetic covalent modification of a neutral metal-organic framework. J. Am. Chem. Soc. 2007, 129, 12368-12369.

41

Song, Y. F.; Cronin, L. Postsynthetic covalent modification of metal-organic framework (MOF) materials. Angew. Chem., Int. Ed. 2008, 47, 4635-4637.

42

Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310-316.

43

Chen, Y.; Hoang, T.; Ma, S. Q. Biomimetic catalysis of a porous iron-based metal-metalloporphyrin framework. Inorg. Chem. 2012, 51, 12600-12602.

44

Chen, Y.; Ma, S. Q. Biomimetic catalysis of metal-organic frameworks. Dalton Trans. 2016, 45, 9744-9753.

45

Larsen, R. W.; Wojtas, L.; Perman, J.; Musselman, R. L.; Zaworotko, M. J.; Vetromile, C. M. Mimicking heme enzymes in the solid state: Metal-organic materials with selectively encapsulated heme. J. Am. Chem. Soc. 2011, 133, 10356-10359.

46

Nath, I.; Chakraborty, J.; Verpoort, F. Metal organic frameworks mimicking natural enzymes: A structural and functional analogy. Chem. Soc. Rev. 2016, 45, 4127-4170.

47

Zhang, W. N.; Lu, G.; Cui, C. L.; Liu, Y. Y.; Li, S. Z.; Yan, W. J.; Xing, C.; Chi, Y. R.; Yang, Y. H.; Huo, F. W. A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles. Adv. Mater. 2014, 26, 4056-4060.

48

Zhang, W. N.; Liu, Y. Y.; Lu, G.; Wang, Y.; Li, S. Z.; Cui, C. L.; Wu, J.; Xu, Z. L.; Tian, D. B.; Huang, W. et al. Mesoporous metal-organic frameworks with size-, shape-, and space-distribution-controlled pore structure. Adv. Mater. 2015, 27, 2923-2929.

49

Liu, Y. Y.; Zhang, W. N.; Li, S. Z.; Cui, C. L.; Wu, J.; Chen, H. Y.; Huo, F. W. Designable yolk-shell nanoparticle@MOF petalous heterostructures. Chem. Mater. 2014, 26, 1119-1125.

50

Chen, B. L.; Liang, C. D.; Yang, J.; Contreras, D. S.; Clancy, Y. L.; Lobkovsky, E. B.; Yaghi, O. M.; Dai, S. A microporous metal-organic framework for gas-chromatographic separation of alkanes. Angew. Chem. 2006, 118, 1418-1421.

51

Rowsell, J. L. C.; Millward, A. R.; Park, K. S.; Yaghi, O. M. Hydrogen sorption in functionalized metal-organic frameworks. J. Am. Chem. Soc. 2004, 126, 5666-5667.

52

Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. 2006, 118, 6120-6124.

53

Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 2000, 404, 982-986.

54

Mugesh, G.; du Mont, W. W.; Sies, H. Chemistry of biologically important synthetic organoselenium compounds. Chem. Rev. 2001, 101, 2125-2179.

55

Huang, X. P.; Fang, R. C.; Wang, D. G.; Wang, J.; Xu, H. P.; Wang, Y. P; Zhang, X. Tuning polymeric amphiphilicity via Se-N interactions: Towards one-step double emulsion for highly selective enzyme mimics. Small 2015, 11, 1537-1541.

56

Huang, X.; Yin, Y. Z.; Liu, J. Q. Design of artificial selenoenzymes based on macromolecular scaffolds. Macromol. Biosci. 2010, 10, 1385-1396.

57

Wang, Y. P.; Xu, H. P.; Ma, N.; Wang, Z. Q.; Zhang, X.; Liu, J. Q.; Shen, J. C. Block copolymer micelles as matrixes for incorporating diselenide compounds: A model system for a water-soluble glutathione peroxidase mimic fine-tuned by ionic strength. Langmuir 2006, 22, 5552-5555.

Nano Research
Pages 5761-5768
Cite this article:
Zhou W, Li H, Xia B, et al. Selenium-functionalized metal-organic frameworks as enzyme mimics. Nano Research, 2018, 11(10): 5761-5768. https://doi.org/10.1007/s12274-017-1623-2
Part of a topical collection:

863

Views

44

Crossref

N/A

Web of Science

41

Scopus

3

CSCD

Altmetrics

Received: 10 February 2017
Revised: 09 April 2017
Accepted: 11 April 2017
Published: 03 October 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017
Return