Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Sb is considered a promising anode material for high-performance sodium-ion batteries (NIBs) owing to its high theoretical specific capacity (660 mAh·g−1). However, Sb shows a very large volume change (~200%) during sodiation and desodiation, leading to poor electrochemical performance. Here, we designed and tested a sandwich-like graphene-supported Sb nanocomposite (denoted Sb@RGO@Sb), in which ultrafine Sb nanoparticles are uniformly anchored on a reduced graphene oxide (RGO) surface. The ultrafine Sb nanocrystals anchored on the RGO surface minimize the aggregation of Sb and inhibit restacking of the RGO sheets, leading to a minimum transport length for both ions and electrons. The graphene layer not only accommodates the large volume variation of Sb during cycling but also promotes the electron conductivity of the whole electrode. Owing to its unique structure, this sandwich-like composite exhibits superior sodium storage properties.
Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.
Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.
Wang, L.; Lu, Y. H.; Liu, J.; Xu, M. W.; Cheng, J. G.; Zhang, D. W.; Goodenough, J. B. A superior low-cost cathode for a Na-ion battery. Angew. Chem., Int. Ed. 2013, 52, 1964–1967.
Li, Y. M.; Xu, S. Y.; Wu, X. Y.; Yu, J. Z.; Wang, Y. S.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 71–77.
Chen, S. Q.; Wu, C.; Shen, L. F.; Zhu, C. B; Huang, Y. Y; Xi, K.; Maier, J.; Yu, Y. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 2017, 1700431.
Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X. H.; Ceder, G. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 2011, 4, 3680–3688.
Hou, H. S.; Yang, Y. C.; Zhu, Y. R.; Jing, M. J.; Pan, C. C.; Fang, L. B.; Song, W. X.; Yang, X. M.; Ji, X. B. An electrochemical study of Sb/acetylene black composite as anode for sodium-ion batteries. Electrochim. Acta 2014, 146, 328–334.
Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.
Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081.
Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.
Stevens, D. A.; Dahn, J. R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271–1273.
Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 2011, 21, 3859–3867.
Su, D. W.; Ahn, H. J.; Wang, G. X. SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem. Commun. 2013, 49, 3131–3133.
Lan, Y.; Gao, X. P.; Zhu, H. Y.; Zheng, Z. F.; Yan, T. Y.; Wu, F.; Ringer, S. P.; Song, D. Y. Titanate nanotubes and nanorods prepared from rutile powder. Adv. Funct. Mater. 2005, 15, 1310–1318.
Yan, B.; Li, X. F.; Bai, Z. M.; Lin, L. X.; Chen, G.; Song, X. S.; Xiong, D. B.; Li, D. J.; Sun, X. L. Superior sodium storage of novel VO2 nano-microspheres encapsulated into crumpled reduced graphene oxide. J. Mater. Chem. A 2017, 5, 4850–4860.
Fan, L. L.; Li, X. F.; Yan, B.; Feng, J. M.; Xiong, D. B.; Li, D. J.; Gu, L.; Wen, Y. R.; Lawes, S.; Sun, X. L. Controlled SnO2 crystallinity effectively dominating sodium storage performance. Adv. Energy Mater. 2016, 6, 1502057.
Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. An amorphous red phosphorus/ carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 2013, 25, 3045–3049.
Qiu, S.; Wu, X. Y.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Antimony nanocrystals encapsulated in carbon microspheres synthesized by a facile self-catalyzing solvothermal method for high-performance sodium-ion battery anodes. ACS Appl. Mater. Interfaces 2016, 8, 1337–1343.
Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism. J. Am. Chem. Soc. 2012, 134, 20805–20811.
Qian, J. F.; Chen, Y.; Wu, L.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. 2012, 48, 7070–7072.
Wu, L.; Hu, X. H.; Qian, J. F.; Pei, F.; Wu, F. Y.; Mao, R. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy Environ. Sci. 2014, 7, 323–328.
Luo, W.; Zhang, P. F.; Wang, X. P.; Li, Q. D.; Dong, Y. F.; Hua, J. C.; Zhou, L.; Mai, L. Q. Antimony nanoparticles anchored in three-dimensional carbon network as promising sodium-ion battery anode. J. Power Sources 2016, 304, 340–345.
Yang, C. L.; Li, W. H.; Yang, Z. Z.; Gu, L.; Yu, Y. Nanoconfined antimony in sulfur and nitrogen co-doped three-dimensionally (3D) interconnected macroporous carbon for high-performance sodium-ion batteries. Nano Energy 2015, 18, 12–19.
Liang, L. Y.; Xu, Y.; Wang, C. L.; Wen, L. Y.; Fang, Y. G.; Mi, Y.; Zhou, M.; Zhao, H. P.; Lei, Y. Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 2954–2962.
Hou, H. S.; Jing, M. J.; Zhang, Y.; Chen, J.; Huang, Z. D.; Ji, X. B. Cypress leaf-like Sb as anode material for high- performance sodium-ion batteries. J. Mater. Chem. A 2015, 3, 17549–17552.
Hu, L. Y.; Zhu, X. S.; Du, Y. C.; Li, Y. F.; Zhou, X. S.; Bao, J. C. A chemically coupled antimony/multilayer graphene hybrid as a high-performance anode for sodium-ion batteries. Chem. Mater. 2015, 27, 8138–8145.
Liu, Z. M.; Yu, X.-Y.; Lou, X. W.; Paik, U. Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries. Energy Environ. Sci. 2016, 9, 2314–2318.
Wan, F.; Guo, J. Z.; Zhang, X. H.; Zhang, J. P.; Sun, H. Z.; Yan, Q. Y.; Han, D. X.; Niu, L.; Wu, X. L. In situ binding Sb nanospheres on graphene via oxygen bonds as superior anode for ultrafast sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 7790–7799.
Wang, N.; Bai, Z. C.; Qian, Y. T.; Yang, J. Double-walled Sb@TiO2–x nanotubes as a superior high-rate and ultralong- lifespan anode material for Na-ion and Li-ion batteries. Adv. Mater. 2016, 28, 4126–4133.
Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.
Chen, H. Q.; Müller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 2008, 20, 3557–3561.
Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.
Yi, Y.; Shim, H.-W.; Seo, S.-D.; Dar, M. A.; Kim, D.-W. Enhanced Li- and Na-storage in Sb-graphene nanocomposite anodes. Mater. Res. Bull. 2016, 76, 338–343.
Lü, H. Y.; Wan, F.; Jiang, L. H.; Wang, G.; Wu, X. L. Graphene nanosheets suppress the growth of Sb nanoparticles in an Sb/C nanocomposite to achieve fast Na storage. Part. Part. Syst. Charact. 2016, 33, 204–211.
Xin, X.; Zhou, X. F.; Wang, F.; Yao, X. Y.; Xu, X. X.; Zhu, Y. M.; Liu, Z. P. A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries. J. Mater. Chem. 2012, 22, 7724–7730.
Nithya, C.; Gopukumar, S. rGO/nano Sb composite: A high performance anode material for Na+ ion batteries and evidence for the formation of nanoribbons from the nano rGO sheet during galvanostatic cycling. J. Mater. Chem. A 2014, 2, 10516–10525.
Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.
Liu, X. W.; Zhong, X. W.; Yang, Z. Z.; Pan, F. S.; Gu, L.; Yu, Y. Gram-scale synthesis of graphene-mesoporous SnO2 composite as anode for lithium-ion batteries. Electrochim. Acta 2015, 152, 178–186.
Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.
Zhang, N.; Liu, Y. C.; Lu, Y. Y.; Han, X. P.; Cheng, F. Y.; Chen, J. Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Res. 2015, 8, 3384–3393.
Hou, H. S.; Jing, M. J.; Yang, Y. C.; Zhang, Y.; Song, W. X.; Yang, X. M.; Chen, J.; Chen, Q. Y.; Ji, X. B. Antimony nanoparticles anchored on interconnected carbon nanofibers networks as advanced anode material for sodium-ion batteries. J. Power Sources 2015, 284, 227–235.
Zhao, Y.; Li, X. F.; Yan, B.; Li, D. J.; Lawes, S.; Sun, X. L. Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: A review. J. Power Sources 2015, 274, 869–884.