AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A facile fabrication route for binary transition metal oxide-based Janus nanoparticles for cancer theranostic applications

M. Zubair Iqbal1Wenzhi Ren1Madiha Saeed1Tianxiang Chen1Xuehua Ma1Xu Yu1Jichao Zhang2Lili Zhang2Aiguo Li2Aiguo Wu1( )
Key Laboratory of Magnetic Materials and DevicesCAS & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province& Division of Functional Materials and Nano devicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201China
Shanghai Synchrotron Radiation FacilityShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201204China
Show Author Information

Graphical Abstract

Abstract

Janus nanoparticles (JNPs) have multiple configurations for molecular imaging, targeting, and therapeutic effects on cancers; these properties have made these particles attractive for biomedical applications. Nonetheless, smart strategies for the controlled synthesis in a liquid phase and exploration of the appropriate applications of JNPs remain a challenge. In this study, a unique liquid-phase method was applied to fabricate Mn3O4-TiO2/ZnO/Fe3O4 multifunctional binary transition metal oxide-based JNPs, using the concept of epitaxial growth and lattice mismatch among synthesized materials. Transmission electron microscopy and scanning transmission electron microscopy results revealed that the created materials are embedded in the form of dimers with good dispersion and homogeneous growth in a nonpolar solvent. Pluronic® F-127-coated Mn3O4- TiO2 JNPs were utilized as a contrast agent in T1-weighted magnetic resonance imaging (MRI) and in photodynamic therapy (PDT) for cancers in vitro and in vivo. In vivo T1-weighted MRI of the heart, liver, and kidneys in mice after intravenous injection of the nanoparticles revealed high sensitivity and biocompatibility of as-synthesized Mn3O4-TiO2 JNPs. Results of synchrotron X-ray fluorescence microscopy mapping showed the stability of the nanocomposites and efficiency of penetration into the cytoplasm and perinuclear area. Inorganic TiO2 photosensitizers showed promising tumor ablation performance in PDT in vitro and in vivo at low intensity of UV irradiation (5.6 mW·cm-2) because of their ultrasmall size and photodegradable stability. These results reveal that multifunctional Mn3O4-TiO2 JNPs enhance a T1-weighted MRI contrast and have excellent properties for PDT and therefore, may be a novel agent for cancer theranostics.

References

1

Kwon, S. G.; Krylova, G.; Phillips, P. J.; Klie, R. F.; Chattopadhyay, S.; Shibata, T.; Bunel, E. E.; Liu, Y. Z.; Prakapenka, V. B.; Lee, B. et al. Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures. Nat. Mater. 2015, 14, 215-223.

2

Lattuada, M.; Hatton, T. A. Synthesis, properties and applications of Janus nanoparticles. Nano Today 2011, 6, 286-308.

3

Kirillova, A.; Schliebe, C.; Stoychev, G.; Jakob, A.; Lang, H.; Synytska, A. Hybrid hairy Janus particles decorated with metallic nanoparticles for catalytic applications. ACS Appl. Mater. Interfaces 2015, 7, 21218-21225.

4

Faria, J.; Ruiz, M. P.; Resasco, D. E. Phase-selective catalysis in emulsions stabilized by Janus silica-nanoparticles. Adv. Synth. Catal. 2010, 352, 2359-2364.

5

Wu, L. Y.; Ross, B. M.; Hong, S.; Lee, L. P. Bioinspired nanocorals with decoupled cellular targeting and sensing functionality. Small 2010, 6, 503-507.

6

Song, Y.; Chen, S. W. Janus nanoparticles: Preparation, characterization, and applications. Chem. —Asian J. 2014, 9, 418-430.

7

Percebom, A. M.; Giner-Casares, J. J.; Claes, N.; Bals, S.; Loh, W.; Liz-Marzán, L. M. Janus gold nanoparticles obtained via spontaneous binary polymer shell segregation. Chem. Commun. 2016, 52, 4278-4281.

8

Zeng, L. Y.; Ren, W. Z.; Xiang, L. C.; Zheng, J. J.; Chen, B.; Wu, A. G. Multifunctional Fe3O4-TiO2 nanocomposites for magnetic resonance imaging and potential photodynamic therapy. Nanoscale 2013, 5, 2107-2113.

9

Valente, G.; Depalo, N.; de Paola, I.; Iacobazzi, R. M.; Denora, N.; Laquintana, V.; Comparelli, R.; Altamura, E.; Latronico, T.; Altomare, M. et al. Integrin-targeting with peptide-bioconjugated semiconductor-magnetic nanocrystalline heterostructures. Nano Res. 2016, 9, 644-662.

10

Yin, S. N.; Wang, C. F.; Yu, Z. Y.; Wang, J.; Liu, S. S.; Chen, S. Versatile bifunctional magnetic-fluorescent responsive Janus supraballs towards the flexible bead display. Adv. Mater. 2011, 23, 2915-2919.

11

Behrens, S. Preparation of functional magnetic nanocomposites and hybrid materials: Recent progress and future directions. Nanoscale 2011, 3, 877-892.

12

Perro, A.; Reculusa, S.; Ravaine, S.; Bourgeat-Lami, E.; Duguet, E. Design and synthesis of Janus micro-and nanoparticles. J. Mater. Chem. 2005, 15, 3745-3760.

13

Roh, K. H.; Martin, D. C.; Lahann, J. Biphasic Janus particles with nanoscale anisotropy. Nat. Mater. 2005, 4, 759-763.

14

Gu, H. W.; Zheng, R. K.; Zhang, X. X.; Xu, B. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: A conjugate of quantum dot and magnetic nanoparticles. J. Am. Chem. Soc. 2004, 126, 5664-5665.

15

Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H. Dumbbell-like bifunctional Au-Fe3O4nanoparticles. Nano Lett. 2005, 5, 379-382.

16

Wang, Y. L.; Xu, H.; Ma, Y. S.; Guo, F. F.; Wang, F.; Shi, D. L. Facile one-pot synthesis and morphological control of asymmetric superparamagnetic composite nanoparticles. Langmuir 2011, 27, 7207-7212.

17

Yabu, H.; Motoyoshi, K.; Higuchi, T.; Shimomura, M. Hierarchical structures in AB/AC type diblock-copolymer blend particles. Phys. Chem. Chem. Phys. 2010, 12, 11944-11947.

18

Ding, X. G.; Zou, Y.; Jiang, J. Au-Cu2S heterodimer formation via oxidization of AuCu alloy nanoparticles and in situ formed copper thiolate. J. Mater. Chem. 2012, 22, 23169-23174.

19

Huang, C. M.; Cheng, S. H.; Jeng, U. S.; Yang, C. S.; Lo, L. W. Formation of CdSe/CdS/ZnS-Au/SiO2 dual-yolk/shell nanostructures through a Trojan-type inside-out etching strategy. Nano Res. 2012, 5, 654-666.

20

Kim, J. W.; Larsen, R. J.; Weitz, D. A. Uniform nonspherical colloidal particles with tunable shapes. Adv. Mater. 2007, 19, 2005-2009.

21

Kim, J. W.; Larsen, R. J.; Weitz, D. A. Synthesis of nonspherical colloidal particles with anisotropic properties. J. Am. Chem. Soc. 2006, 128, 14374-14377.

22

Tang, C.; Zhang, C. L.; Liu, J. G.; Qu, X. Z.; Li, J. L.; Yang, Z. Z. Large scale synthesis of Janus submicrometer sized colloids by seeded emulsion polymerization. Macromolecules 2010, 43, 5114-5120.

23

Cayre, O.; Paunov, V. N.; Velev, O. D. Fabrication of dipolar colloid particles by microcontact printing. Chem. Commun. 2003, 2296-2297.

24

Glotzer, S. C.; Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 2007, 6, 557-562.

25

Cozzoli, P. D.; Pellegrino, T.; Manna, L. Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem. Soc. Rev. 2006, 35, 1195-1208.

26

Casavola, M.; Buonsanti, R.; Caputo, G.; Cozzoli, P. D. Colloidal strategies for preparing oxide-based hybrid nanocrystals. Eur. J. Inorg. Chem. 2008, 2008, 837-854.

27

Gröschel, A. H.; Walther, A.; Löbling, T. I.; Schmelz, J.; Hanisch, A.; Schmalz, H.; Müller, A. H. E. Facile, solutionbased synthesis of soft, nanoscale Janus particles with tunable Janus balance. J. Am. Chem. Soc. 2012, 134, 13850-13860.

28

Hu, J.; Zhou, S. X.; Sun, Y. Y.; Fang, X. S.; Wu, L. M. Fabrication, properties and applications of Janus particles. Chem. Soc. Rev. 2012, 41, 4356-4378.

29

Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J. B.; Wang, L. W.; Paul Alivisatos, A. colloidal nanocrystal heterostructures with linear and branched topology. Nature 2004, 430, 190-195.

30

Hu, S. H.; Gao, X. H. Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy. J. Am. Chem. Soc. 2010, 132, 7234-7237.

31

Jiang, S.; Granick, S. Controlling the geometry (Janus balance) of amphiphilic colloidal particles. Langmuir 2008, 24, 2438-2445.

32

Jiang, S.; Schultz, M. J.; Chen, Q.; Moore, J. S.; Granick, S. Solvent-free synthesis of Janus colloidal particles. Langmuir 2008, 24, 10073-10077.

33

Zhang, S. Y.; Li, Z.; Samarajeewa, S.; Sun, G. R.; Yang, C.; Wooley, K. L. Orthogonally dual-clickable Janus nanoparticles via a cyclic templating strategy. J. Am. Chem. Soc. 2011, 133, 11046-11049.

34

Dinh, C. T.; Nguyen, T. D.; Kleitz, F.; Do, T. O. Shapecontrolled synthesis of highly crystalline titania nanocrystals. ACS Nano 2009, 3, 3737-3743.

35

Wan, S.; Kelly, P. M.; Mahon, E.; Stöckmann, H.; Rudd, P. M.; Caruso, F.; Dawson, K. A.; Yan, Y.; Monopoli, M. P. The "sweet" side of the protein corona: Effects of glycosylation on nanoparticle-cell interactions. ACS Nano 2015, 9, 2157-2166.

36

Iqbal, M. Z.; Ma, X. H.; Chen, T. X.; Zhang, L. E.; Ren, W. Z.; Xiang, L. C.; Wu, A. G. Silica-coated superparamagnetic iron oxide nanoparticles (SPIONPs): Anew type contrast agent of T1 magnetic resonance imaging (MRI). J. Mater. Chem. B 2015, 3, 5172-5181.

37

Ren, W. Z.; Zeng, L. Y.; Shen, Z. Y.; Xiang, L. C.; Gong, A.; Zhang, J. C.; Mao, C. W.; Li, A. G.; Paunesku, T.; Woloschak, G. E. et al. Enhanced doxorubicin transport to multidrug resistant breast cancer cells via TiO2 nanocarriers. RSC Adv. 2013, 3, 20855-20861.

38

Monopoli, M. P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Baldelli Bombelli, F.; Dawson, K. A. Physical-chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 2011, 133, 2525-2534.

39

Bowtell, R. Medical imaging: Colourful future for MRI. Nature 2008, 453, 993-994.

40

Hsu, B. Y. W.; Kirby, G.; Tan, A.; Seifalian, A. M.; Li, X.; Wang, J. Relaxivity and toxicological properties of manganese oxide nanoparticles for MRI applications. RSC Adv. 2016, 6, 45462-45474.

41

Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823-839.

42

Xing, R. J.; Zhang, F.; Xie, J.; Aronova, M.; Zhang, G. F.; Guo, N.; Huang, X. L.; Sun, X. L.; Liu, G.; Bryant, L. H. et al. Polyaspartic acid coated manganese oxide nanoparticles for efficient liver MRI. Nanoscale 2011, 3, 4943-4945.

43

Paunesku, T.; Wanzer, M. B.; Kirillova, E. N.; Muksinova, K. N.; Revina, V. S.; Romanov, S. A.; Lyubchansky, E. R.; Grosche, B.; Birschwilks, M.; Vogt, S. et al. X-ray fluorescence microscopy for investigation of archival tissues. Health Phys. 2012, 103, 181-186.

44

Prasad, P.; Gordijo, C. R.; Abbasi, A. Z.; Maeda, A.; Ip, A.; Rauth, A. M.; DaCosta, R. S.; Wu, X. Y. Multifunctional albumin-MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano 2014, 8, 3202-3212.

45

Song, M. L.; Liu, T.; Shi, C. R.; Zhang, X. Z.; Chen, X. Y. Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia. ACS Nano 2016, 10, 633-647.

Nano Research
Pages 5735-5750
Cite this article:
Iqbal MZ, Ren W, Saeed M, et al. A facile fabrication route for binary transition metal oxide-based Janus nanoparticles for cancer theranostic applications. Nano Research, 2018, 11(10): 5735-5750. https://doi.org/10.1007/s12274-017-1628-x
Part of a topical collection:

905

Views

41

Crossref

N/A

Web of Science

47

Scopus

0

CSCD

Altmetrics

Received: 11 December 2016
Revised: 11 April 2017
Accepted: 13 April 2017
Published: 03 October 2018
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return