AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Graphene electrode with tunable charge transport in thin-film transistors

Ick-Joon Park1Tae In Kim1In-Tak Cho2Chang-Woo Song3Ji-Woong Yang3Hongkeun Park4Woo-Seok Cheong3Sung Gap Im4Jong-Ho Lee2Sung-Yool Choi1( )
School of Electrical EngineeringGraphene/2D Materials Research CenterKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
Department of Electrical EngineeringSeoul National UniversitySeoul08826Republic of Korea
Electronics and Telecommunications Research InstituteDaejeon34129Republic of Korea
Department of Chemical and Biomolecular EngineeringGraphene/2D Materials Research CenterKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
Show Author Information

Graphical Abstract

Abstract

Graphene, a single atomic layer of sp2-hybridized carbon, has immense potential as a transparent conducting material in electronic applications owing to its superior properties, including optical transparency and high conductivity. Particularly, the tunable work function of graphene enables the integration of graphene electrodes with various electronic devices. To achieve high performance in graphene-based devices, effective charge transport between the graphene electrode and the semiconducting material needs to be optimized; this is closely related to the modulation of the Schottky barrier (SB). In this study, we investigate the tunable charge transport properties as a function of graphene doping in n-channel thin-film transistors (TFTs) in terms of the electrical characteristics and low-frequency noise (LFN) behaviors. Alkali metal carbonates tuned the work function of graphene, resulting in a dramatic decrease in the SB and an improvement of the carrier injection in n-channel TFTs. The electrical performance of the TFTs was evaluated by extraction of the field-effect mobilities and ratio of contact resistance to total resistance. Furthermore, the level of contact noise created by the barrier height fluctuation and relative contribution of channel noise and contact noise in the TFTs was investigated by LFN measurements to demonstrate the tunable charge transport. Our findings therefore provide new insights into the tunable charge transport mechanism in graphene-based devices and reveal the immense potential of graphene as electrodes in high performance flexible and transparent displays.

Electronic Supplementary Material

Download File(s)
nr-11-1-274_ESM.pdf (1.2 MB)

References

1

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

2

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

3

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

4

Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.

5

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Twodimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10451–10453.

6

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

7

Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004, 428, 911–918.

8

Chen, Z.; Cotterell, B.; Wang, W.; Guenther, E.; Chua, S. J. A mechanical assessment of flexible optoelectronic devices. Thin Solid Films 2001, 394, 201–205.

9

Kumar, A.; Zhou, C. W. The race to replace tin-doped indium oxide: Which material will win? ACS Nano 2010, 4, 11–14.

10

Sharma, A.; Andersson, G.; Lewis, D. A. Role of humidity on indium and tin migration in organic photovoltaic devices. Phys. Chem. Chem. Phys. 2011, 13, 4381–4387.

11

Balandin, A. A. Low-frequency 1/f noise in graphene devices. Nat. Nanotechnol. 2013, 8, 549–555.

12

Li, P.; Wang, Q. H.; Wang, X. H.; Lu, H. B.; Zhang, G. B.; Wang, X. H.; Qiu, L. Z. Investigation of the semiconductor/electrode interface in organic thin-film transistor using graphene electrodes. Syn. Metals 2015, 202, 103–109.

13

Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

14

Pang, S. P.; Hernandez, Y.; Feng, X. L.; Müllen, K. Graphene as transparent electrode material for organic electronics. Adv. Mater. 2011, 23, 2779–2795.

15

Di, C. A.; Wei, D. C.; Yu, G.; Liu, Y. Q.; Guo, Y. L.; Zhu, D. B. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv. Mater. 2008, 20, 3289–3293.

16

Wu, J. B.; Agrawal, M.; Becerril, H. A.; Bao, Z.; Liu, Z. F.; Chen, Y. S.; Peumans, P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 2010, 4, 43–48.

17

Han, T. H.; Lee, Y.; Choi, M. R.; Woo, S. H.; Bae, S. H.; Hong, B. H.; Ahn, J. H.; Lee, T. W. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics 2012, 6, 105–110.

18

Sun, T.; Wang, Z. L.; Shi, Z. J.; Ran, G. Z.; Xu, W. J.; Wang, Z. Y.; Li, Y. Z.; Dai, L.; Qin, G. G. Multilayered graphene used as anode of organic light emitting devices. Appl. Phys. Lett. 2010, 96, 133301.

19

Lee, S. T.; Gao, Z. Q.; Hung, L. S. Metal diffusion from electrodes in organic light-emitting diodes. Appl. Phys. Lett. 1999, 75, 1404–1406.

20

Wang, Y.; Tong, S. W.; Xu, X. F.; Özyilmaz, B.; Loh, K. P. Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Adv. Mater. 2011, 23, 1514–1518.

21

Han, T. H.; Kwon, S. J.; Li, N. N.; Seo, H. K.; Xu, W. T.; Kim, K. S.; Lee, T. W. Versatile p-type chemical doping to achieve ideal flexible graphene electrodes. Angew. Chem., Int. Ed. 2016, 55, 6197–6201.

22

Kim, J. S.; Kim, B. J.; Choi, Y. J.; Lee, M. H.; Kang, M. S.; Cho, J. H. An organic vertical field-effect transistor with underside-doped graphene electrodes. Adv. Mater. 2016, 28, 4803–4810.

23

Shin, D. W.; Lee, H. M.; Yu, S. M.; Lim, K. S.; Jung, J. H.; Kim, M. K.; Kim, S. W.; Han, J. H.; Ruoff, R. S.; Yoo, J. B. A facile route to recover intrinsic graphene over large scale. ACS Nano 2012, 6, 7781–7788.

24

Chakrapani, V.; Angus, J. C.; Anderson, A. B.; Wolter, S. D.; Stoner, B. R.; Sumanasekera, G. U. Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple. Science 2007, 318, 1424–1430.

25

Park, J.; Lee, W. H.; Huh, S.; Sim, S. H.; Kim, S. B.; Cho, K.; Hong, B. H.; Kim, K. S. Work-function engineering of graphene electrodes by self-assembled monolayers for highperformance organic field-effect transistors. J. Phys. Chem. Lett. 2011, 2, 841–845.

26

Lin, Y. C.; Lin, C. Y.; Chiu, P. W. Controllable graphene N-doping with ammonia plasma. Appl. Phys. Lett. 2010, 96, 133110.

27

Guo, B. D.; Liu, Q.; Chen, E. D.; Zhu, H. W.; Fang, L.; Gong, J. R. Controllable N-doping of graphene. Nano Lett. 2010, 10, 4975–4980.

28

Deng, D. H.; Pan, X. L.; Yu, L.; Cui, Y.; Jiang, Y. P.; Qi, J.; Li, W. X.; Fu, Q.; Ma, X. C.; Xue, Q. K. et al. Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 2011, 23, 1188–1193.

29

Panchakarla, L. S.; Subrahmanyam, K. S.; Saha, S. K.; Govindaraj, A.; Krishnamurthy, H. R.; Waghmare, U. V.; Rao, C. N. R. Synthesis, structure, and properties of boronand nitrogen-doped graphene. Adv. Mater. 2009, 21, 4726–4730.

30

Wei, D. C.; Liu, Y. Q.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752–1758.

31

Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.; Dubey, M.; Ajayan, P. M. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 2010, 4, 6337–6342.

32

Luo, Z. Q.; Lim, S.; Tian, Z. Q.; Shang, J. Z.; Lai, L. F.; MacDonald, B.; Fu, C.; Shen, Z. X.; Yu, T.; Lin, J. Y. Pyridinic N doped graphene: Synthesis, electronic structure, and electrocatalytic property. J. Mater. Chem. 2011, 21, 8038–8044.

33

Zhang, C. H.; Fu, L.; Liu, N.; Liu, M. H.; Wang, Y. Y.; Liu, Z. F. Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv. Mater. 2011, 23, 1020–1024.

34

Kwon, K. C.; Choi, K. S.; Kim, S. Y. Increased work function in few-layer graphene sheets via metal chloride doping. Adv. Func. Mater. 2012, 22, 4724–4731.

35

Kwon, K. C.; Choi, K. S.; Kim, B. J.; Lee, J. L.; Kim, S. Y. Work-function decrease of graphene sheet using alkali metal carbonates. J. Phys. Chem. C 2012, 116, 26586–26591.

36

Kwon, K. C.; Choi, K. S.; Kim, C.; Kim, S. Y. Role of metal cations in alkali metal chloride doped graphene. J. Phys. Chem. C 2014, 118, 8187–8193.

37

Bong, J. H.; Sul, O.; Yoon, A.; Choi, S. Y.; Cho, B. J. Facile graphene n-doping by wet chemical treatment for electronic applications. Nanoscale 2014, 6, 8503–8508.

38

Chang, J. H.; Lin, W. H.; Wang, P. C.; Taur, J. I.; Ku, T. A.; Chen, W. T.; Yan, S. J.; Wu, C. I. Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode. Sci. Rep. 2015, 5, 9693.

39

Sanders, S.; Cabrero-Vilatela, A.; Kidambi, P. R.; Alexander-Webber, J. A.; Weijtens, C.; Braeuninger-Weimer, P.; Aira, A. I.; Qasim, M. M.; Wilkinson, T. D.; Roberston, T. et al. Engineering high charge transfer n-doping of graphene electrodes and its application to organic electronics. Nanoscale 2015, 7, 13135–13142.

40

Park, H. Y.; Jung, W. S.; Kang, D. H.; Jeon, J.; Yoo, G.; Park, Y.; Lee, J.; Jang, Y. H.; Lee, J.; Park, S. et al. Extremely low contact resistance on graphene through n-type doping and edge contact design. Adv. Mater. 2016, 28, 864–870.

41

Ashraf, A.; Wu, Y. B.; Wang, M. C.; Yong, K.; Sun, T.; Jing, Y. H.; Haasch, R. T.; Aluru, N. R.; Nam, S. Dopinginduced tunable wettability and adhesion of graphene. Nano Lett. 2016, 16, 4708–4712.

42

Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492.

43

Kwon, J. Y.; Son, K. S.; Jung, J. S.; Kim, T. S.; Ryu, M. K.; Park, K. B.; Yoo, B. W; Kim, J. W.; Lee, Y. G.; Park, K. C. et al. Bottom-gate gallium indium zinc oxide thin-film transistor array for high-resolution AMOLED display. IEEE Electron Dev. Lett. 2008, 29, 1309–1311.

44

Barquinha, P.; Vilà, A. M.; Gonçalves, G.; Pereira, L.; Martins, R.; Morante, J. R.; Fortunato, E. Gallium–indium–zinc-oxide-based thin-film transistors: Influence of the source/drain material. IEEE Trans. Electron Dev. 2008, 55, 954–960.

45

Kim, J. B.; Fuentes-Hernandez, C.; Kippelen, B. Highperformance InGaZnO thin-film transistors with high-k amorphous Ba0.5Sr0.5TiO3 gate insulator. Appl. Phys. Lett. 2008, 93, 242111.

46

Na, J. H.; Kitamura, M.; Arakawa, Y. High field-effect mobility amorphous InGaZnO transistors with aluminum electrodes. Appl. Phys. Lett. 2008, 93, 063501.

47

Cherenack, K. H.; Münzenrieder, N. S.; Tröster, G. Impact of mechanical bending on ZnO and IGZO thin-film transistors. IEEE Electron Dev. Lett. 2010, 31, 1254–1256.

48

Park, J. S.; Kim, T. W.; Stryakhilev, D.; Lee, J. S.; An, S. G.; Pyo, Y. S.; Lee, D. B.; Mo, Y. G.; Jin, D. U.; Chung, H. K. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Appl. Phys. Lett. 2009, 95, 013503.

49

Liu, Y.; Zhou, H. L.; Cheng, R.; Yu, W.; Huang, Y.; Duan, X. F. Highly flexible electronics from scalable vertical thin film transistors. Nano Lett. 2014, 14, 1413–1418.

50

Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

51

Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

52

Wang, Q. H.; Jin, Z.; Kim, K. K.; Hilmer, A. J.; Paulus, G. L. C.; Shih, C. J.; Ham, M. -H.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T. et al. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat. Chem. 2012, 4, 724–732.

53

Yang, S. Y.; Oh, J. G.; Jung, D. Y.; Choi, H.; Yu, C. H.; Shin, J.; Choi, C. G.; Cho, B. J.; Choi, S. Y. Metal-etchingfree direct delamination and transfer of single-layer graphene with a high degree of freedom. Small 2015, 11, 175–181.

54

Moon, H.; Seong, H.; Shin, W. C.; Park, W. T.; Kim, M.; Lee, S.; Bong, J. H.; Noh, Y. Y.; Cho, B. J.; Yoo, S. et al. Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics. Nat. Mater. 2015, 14, 628–635.

55

Chen, S. H.; Liu, H. C.; Lee, C. Y.; Gan, J. Y.; Zan, H. W.; Hwang, J. C.; Cheng, Y. Y.; Lyu, P. C. High performance electric-double-layer amorphous IGZO thin-film transistors gated with hydrated bovine serum albumin protein. Org. Electron. 2015, 24, 200–204.

56

Malay, R.; Nandur, A.; Hewlett, J.; Vaddi, R.; White, B. E.; Poliks, M. D.; Garner, S. M.; Huang, M. H.; Pollard, S. C. Active and passive integration on flexible glass substrates: Subtractive single micron metal interposers and high performance IGZO thin film transistors. In Proceeings of the IEEE 65th Electronic Components and Technology Conference, San Diego, CA, 2015, pp 691–699.

57

Streetman, B. G.; Banerjee, S. Solid State Electronic Devices; 5th ed., Prentice Hall: New Jersey, 2000.

58

Godo, H.; Kawae, D.; Yoshitomi, S.; Sasaki, T.; Ito, S.; Ohara, H.; Miyanaga, A.; Yamazaki, S. P-9: Numerical analysis on temperature dependence of characteristics of amorphous In-Ga-Zn-oxide TFT. SID Symp. Dig. Tech. Papers 2009, 40, 1110–1112.

59

Vandamme, L. K. J.; Li, X. S.; Rigaud, D. 1/f noise in MOS devices, mobility or number fluctuations? IEEE Trans. Electron Dev. 1994, 41, 1936–1945.

60

Hooge, F. N.; Kleinpenning, T. G. M.; Vandamme, L. K. J. Experimental studies on 1/f noise. Rep. Prog. Phys. 1981, 44, 479–532.

61

Kumar, A.; Latzel, M.; Christiansen, S.; Kumar, V.; Singh, R. Effect of rapid thermal annealing on barrier height and 1/f noise of Ni/GaN Schottky barrier diodes. Appl. Phys. Lett. 2015, 107, 093502.

62

Kingston, R. H. Semiconductor Surface Physics; University of Pennsylvania Press: Pennsylvania, 1957.

63

Lee, J. M.; Cheong, W. S.; Hwang, C. S.; Cho, I. T.; Kwon, H. I.; Lee, J. H. Low-frequency noise in amorphous indium–gallium–zinc-oxide thin-film transistors. IEEE Electron Dev. Lett. 2009, 30, 505–507.

Nano Research
Pages 274-286
Cite this article:
Park I-J, Kim TI, Cho I-T, et al. Graphene electrode with tunable charge transport in thin-film transistors. Nano Research, 2018, 11(1): 274-286. https://doi.org/10.1007/s12274-017-1630-3

747

Views

14

Crossref

N/A

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 17 October 2016
Revised: 02 April 2017
Accepted: 14 April 2017
Published: 29 July 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return