AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Direct identification of monolayer rhenium diselenide by an individual diffraction pattern

Zhen Fei1Bo Wang2Ching-Hwa Ho3Fang Lin4Jun Yuan1,5Ze Zhang1Chuanhong Jin1( )
State Key Laboratory of Silicon MaterialsSchool of Materials Science and Engineering, Zhejiang UniversityHangzhou310027China
School of Physical Science and TechnologyLanzhou UniversityLanzhou730000China
Graduate Institute of Applied Science and TechnologyTaiwan University of Science and Technology, Taipei106TaiwanChina
College of Electronic EngineeringSouth China Agricultural UniversityGuangzhou510642China
Department of PhysicsUniversity of York, HeslingtonYork YO105DDUK
Show Author Information

Graphical Abstract

Abstract

In the current extensive studies of layered two-dimensional (2D) materials, compared to hexagonal structures such as graphene, hBN, and MoS2, low- symmetry 2D materials have shown great potential for applications in anisotropic devices. Rhenium diselenide (ReSe2) possesses the bulk space group P1 and belongs to the triclinic crystal system with a deformed cadmium-iodide-type structure. Here, we propose an electron diffraction-based method to distinguish the monolayer ReSe2 membrane from multilayer ReSe2 and its two different vertical orientations. Our method is also applicable to other low-symmetry crystal systems, including both triclinic and monoclinic lattices, as long as their third unit-cell basis vectors are not perpendicular to the basal plane. Our experimental results are well explained by kinematical electron diffraction theory and the corresponding simulations. Generalization of our method to other 2D materials, such as graphene, is also discussed.

Electronic Supplementary Material

Download File(s)
nr-10-7-2535_ESM.pdf (1.5 MB)

References

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

2

Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490-493.

3

Xiao, D.; Liu, G. -B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

4

Sipos, B.; Kusmartseva, A. F.; Akrap, A.; Berger, H.; Forró, L.; Tutiš, E. From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 2008, 7, 960-965.

5

Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. : Condens. Matter 2011, 23, 213001.

6

Castro Neto, A. H. Charge density wave, superconductivity, and anomalous metallic behavior in 2D transition metal dichalcogenides. Phys. Rev. Lett. 2001, 86, 4382-4385.

7

Ali, M. N.; Xiong, J.; Flynn, S.; Tao, J.; Gibson, Q. D.; Schoop, L. M.; Liang, T.; Haldolaarachchige, N.; Hirschberger, M.; Ong, N. P. et al. Large, non-saturating magnetoresistance in WTe2. Nature 2014, 514, 205-208.

8

Ribeiro, H. B.; Pimenta, M. A.; de Matos, C. J. S.; Moreira, R. L.; Rodin, A. S.; Zapata, J. D.; de Souza, E. A. T.; Castro Neto, A. H. Unusual angular dependence of the Raman response in black phosphorus. ACS Nano 2015, 9, 4270- 4276.

9

Lu, W. L.; Ma, X. M.; Fei, Z.; Zhou, J. G.; Zhang, Z. Y.; Jin, C. H.; Zhang, Z. Probing the anisotropic behaviors of black phosphorus by transmission electron microscopy, angular- dependent Raman spectra, and electronic transport measurements. Appl. Phys. Lett. 2015, 107, 021906.

10

Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

11

Song, Q. J.; Pan, X. C.; Wang, H. F.; Zhang, K.; Tan, Q. H.; Li, P.; Wan, Y.; Wang, Y. L.; Xu, X. L.; Lin, M. L. et al. The in-plane anisotropy of WTe2 investigated by angle- dependent and polarized Raman spectroscopy. Sci. Rep. 2016, 6, 29254.

12

Chenet, D. A.; Aslan, O. B.; Huang, P. Y.; Fan, C.; van der Zande, A. M.; Heinz, T. F.; Hone, J. C. In-plane anisotropy in mono- and few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy. Nano Lett. 2015, 15, 5667-5672.

13

Liu, E. F.; Fu, Y. J.; Wang, Y. J.; Feng, Y. Q.; Liu, H. M.; Wan, X. G.; Zhou, W.; Wang, B. G.; Shao, L. B.; Ho, C. -H. et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 2015, 6, 6991

14

Zhong, H. -X.; Gao, S. Y.; Shi, J. -J.; Yang, L. Quasiparticle band gaps, excitonic effects, and anisotropic optical properties of the monolayer distorted 1T diamond-chain structures ReS2 and ReSe2. Phys. Rev. B 2015, 92, 115438.

15

Wolverson, D.; Crampin, S.; Kazemi, A. S.; Ilie, A.; Bending, S. J. Raman spectra of monolayer, few-layer, and bulk ReSe2: An anisotropic layered semiconductor. ACS Nano 2014, 8, 11154-11164.

16

Hart, L.; Dale, S.; Hoye, S.; Webb, J. L.; Wolverson, D. Rhenium dichalcogenides: Layered semiconductors with two vertical orientations. Nano Lett. 2016, 16, 1381-1386.

17

Lin, Y. -C.; Komsa, H. -P.; Yeh, C. -H.; Björkman, T.; Liang, Z. -Y.; Ho, C. -H.; Huang, Y. -S.; Chiu, P. -W.; Krasheninnikov, A. V.; Suenaga, K. Single-layer ReS2: Two-dimensional semiconductor with tunable in-plane anisotropy. ACS Nano 2015, 9, 11249-11257.

18
Abergel, D. S. L.; Russell, A.; Fal'ko, V. I. Visibility of graphene flakes on a dielectric substrate. 2007, arXiv: 0705.0091. arXiv. org e-Print archive. https://arxiv.org/abs/0705.0091 (accessed Oct 27, 2016).
19

Benameur, M. M.; Radisavljevic, B.; Héron, J. S.; Sahoo, S.; Berger, H.; Kis, A. Visibility of dichalcogenide nanolayers. Nanotechnology 2011, 22, 125706.

20

Jung, I.; Pelton, M.; Piner, R.; Dikin, D. A.; Stankovich, S.; Watcharotone, S.; Hausner, M.; Ruoff, R. S. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 2007, 7, 3569-3575.

21

Casiraghi, C.; Hartschuh, A.; Lidorikis, E.; Qian, H.; Harutyunyan, H.; Gokus, T.; Novoselov, K. S.; Ferrari, A. C. Rayleigh imaging of graphene and graphene layers. Nano Lett. 2007, 7, 2711-2717.

22

Li, H.; Lu, G.; Yin, Z. Y.; He, Q. Y.; Li, H.; Zhang, Q.; Zhang, H. Optical identification of single- and few-layer MoS2 sheets. Small 2012, 8, 682-686.

23

Blake, P.; Hill, E. W.; Castro Neto, A. H.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124.

24

Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 2007, 7, 2758-2763.

25

Yin, X. B.; Ye, Z. L.; Chenet, D. A.; Ye, Y.; O'Brien, K.; Hone, J. C.; Zhang, X. Edge nonlinear optics on a MoS2 atomic monolayer. Science 2014, 344, 488-490.

26

Malard, L. M.; Alencar, T. V.; Barboza, A. P. M.; Mak, K. F.; de Paula, A. M. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys. Rev. B 2013, 87, 201401.

27

Zeng, H. L.; Liu, G. -B.; Dai, J. F.; Yan, Y. J.; Zhu, B. R.; He, R. C.; Xie, L.; Xu, S. J.; Chen, X. H.; Yao, W. et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 2013, 3, 1608.

28

Kumar, N.; Najmaei, S.; Cui, Q. N.; Ceballos, F.; Ajayan, P. M.; Lou, J.; Zhao, H. Second harmonic microscopy of monolayer MoS2. Phys. Rev. B 2013, 87, 161403.

29

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

30

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. -Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.

31

Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235-246.

32

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

33
Politano, A.; Chiarello, G.; Spinella, C. Plasmon spectroscopy of graphene and other two-dimensional materials with transmission electron microscopy. Mat. Sci. Semicon. Proc., in press, DOI: 10.1016/j.mssp.2016.05.002.https://doi.org/10.1016/j.mssp.2016.05.002
34

Pan, C. T.; Nair, R. R.; Bangert, U.; Ramasse, Q.; Jalil, R.; Zan, R.; Seabourne, C. R.; Scott, A. J. Nanoscale electron diffraction and plasmon spectroscopy of single- and few- layer boron nitride. Phys. Rev. B 2012, 85, 045440.

35

Odlyzko, M. L.; Mkhoyan, K. A. Identifying hexagonal boron nitride monolayers by transmission electron microscopy. Microsc. Microanal. 2012, 18, 558-567.

36

Yamashita, S.; Koshiya, S.; Ishizuka, K.; Kimoto, K. Quantitative annular dark-field imaging of single-layer graphene. Microscopy 2015, 64, 143-150.

37

Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. -C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615-2622.

38

Shevitski, B.; Mecklenburg, M.; Hubbard, W. A.; White, R. E.; Dawson, B.; Lodge, M. S.; Ishigami, M.; Regan, B. C. Dark-field transmission electron microscopy and the Debye- Waller factor of graphene. Phys. Rev. B 2013, 87, 045417.

39

Ping, J. L.; Fuhrer, M. S. Layer number and stacking sequence imaging of few-layer graphene by transmission electron microscopy. Nano Lett. 2012, 12, 4635-4641.

40

Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Obergfell, D.; Roth, S.; Girit, C.; Zettl, A. On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 2007, 143, 101-109.

41

Kumar, P.; Agrawal, K. V.; Tsapatsis, M.; Mkhoyan, K. A. Quantification of thickness and wrinkling of exfoliated two- dimensional zeolite nanosheets. Nat. Commun. 2015, 6, 7128.

42

Brown, L.; Hovden, R.; Huang, P.; Wojcik, M.; Muller, D. A.; Park, J. Twinning and twisting of tri- and bilayer graphene. Nano Lett. 2012, 12, 1609-1615.

43

Wu, R. J.; Odlyzko, M. L.; Mkhoyan, K. A. Determining the thickness of atomically thin MoS2 and WS2 in the TEM. Ultramicroscopy 2014, 147, 8-20.

44

Brivio, J.; Alexander, D. T. L.; Kis, A. Ripples and layers in ultrathin MoS2 membranes. Nano Lett. 2011, 11, 5148-5153.

45

Wang, Z. Q.; Ning, S. C.; Fujita, T.; Hirata, A.; Chen, M. W. Unveiling three-dimensional stacking sequences of 1T phase MoS2 monolayers by electron diffraction. ACS Nano 2016, 10, 10308-10316.

46

Peng, L. M. Electron atomic scattering factors and scattering potentials of crystals. Micron 1999, 30, 625-648.

47

Reimer, L; Kohl, H. Transmission Electron Microscopy: Physics of Image Formation; Springer: New York, 2008.

48

Wang, Z. -L. Elastic and Inelastic Scattering in Electron Diffraction and Imaging; Springer: New York, 1995.

49
Koch, C. T. Determination of core structure periodicity and point defect density along dislocations. Ph. D. Dissertation, Arizona State University, Tempe, Arizona, 2002.
Nano Research
Pages 2535-2544
Cite this article:
Fei Z, Wang B, Ho C-H, et al. Direct identification of monolayer rhenium diselenide by an individual diffraction pattern. Nano Research, 2017, 10(7): 2535-2544. https://doi.org/10.1007/s12274-017-1639-7

655

Views

5

Crossref

N/A

Web of Science

5

Scopus

2

CSCD

Altmetrics

Received: 27 October 2016
Revised: 14 April 2017
Accepted: 18 April 2017
Published: 19 May 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return