Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The development of a safe and effective adjuvant that amplifies the immune response to an antigen is important for vaccine delivery. In this study, we developed pristine mesoporous carbon hollow spheres as high-capacity vaccine protein nanocarriers and safe adjuvants for boosting the immune response. Mono-dispersed invaginated mesostructured hollow carbon spheres (IMHCSs) have an average particle size of ~200 nm, large pore size of 15 nm, and high pore volume of 2.85 cm3·g-1. IMHCSs exhibited a very high loading capacity (1, 040 μg·mg-1) towards ovalbumin (OVA, a model antigen), controlled OVA release behavior, excellent safety profile to normal cells, and high antigen delivery efficacy towards macrophages. In vivo immunization studies in mice demonstrated that OVA-loaded IMHCSs induced a 3-fold higher IgG response compared to a traditional adjuvant QuilA used in veterinary vaccine research. OVA delivered by IMHCSs induced a higher IgG1 concentration than IgG2a, indicating a T-helper 2 (Th2)-polarized response. Interferon-γ and interleukin-4 concentration analysis revealed both T-helper 1 (Th1) and Th2 immune responses induced by OVA-loaded IMHCSs. IMHCSs are safer adjuvants than QuilA. Our study revealed that pure IMHCSs without further functionalization can be used as a safe adjuvant for promoting Th2-biased immune responses for vaccine delivery.
Petrovsky, N.; Aguilar, J. C. Vaccine adjuvants: Current state and future trends. Immunol. Cell Biol. 2004, 82, 488-496.
Marrack, P.; McKee, A. S.; Munks, M. W. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol. 2009, 9, 287-293.
Reed, S. G.; Orr, M. T.; Fox, C. B. Key roles of adjuvants in modern vaccines. Nat. Med. 2013, 19, 1597-1608.
Amanna, I. J.; Slifka, M. K. Contributions of humoral and cellular immunity to vaccine-induced protection in humans. Virology 2011, 411, 206-215.
Romagnani, S. The Th1/Th2 paradigm. Immunol. Today 1997, 18, 263-266.
Singh, M.; O'Hagan, D. Advances in vaccine adjuvants. Nat. Biotechnol. 1999, 17, 1075-1081.
Relyveld, E. H.; Bizzini, B.; Gupta, R. K. Rational approaches to reduce adverse reactions in man to vaccines containing tetanus and diphtheria toxoids. Vaccine 1998, 16, 1016-1023.
Gupta, R. K. Aluminum compounds as vaccine adjuvants. Adv. Drug Deliv. Rev. 1998, 32, 155-172.
Freund, J.; Casals, J.; Hosmer, E. P. Sensitization and antibody formation after injection of tubercle bacilli and paraffin oil. Proc. Soc. Exp. Biol. Med. 1937, 37, 509-513.
Zhao, L.; Seth, A.; Wibowo, N.; Zhao, C. X.; Mitter, N.; Yu, C. Z.; Middelberg, A. P. J. Nanoparticle vaccines. Vaccine 2014, 32, 327-337.
Smith, D. M.; Simon, J. K.; Baker, J. R., Jr. Applications of nanotechnology for immunology. Nat. Rev. Immunol. 2013, 13, 592-605.
Oyewumi, M. O.; Kumar, A.; Cui, Z. R. Nano-microparticles as immune adjuvants: Correlating particle sizes and the resultant immune responses. Expert Rev. Vaccines 2010, 9, 1095-1107.
Gregory, A. E.; Titball, R.; Williamson, D. Vaccine delivery using nanoparticles. Front. Cell. Infect. Microbiol. 2013, 3, 13.
Zhang, W. F.; Wang, L. Y.; Liu, Y.; Chen, X. M.; Liu, Q.; Jia, J. L.; Yang, T. Y.; Qiu, S. H.; Ma, G. H. Immune responses to vaccines involving a combined antigen-nanoparticle mixture and nanoparticle-encapsulated antigen formulation. Biomaterials 2014, 35, 6086-6097.
Mahony, D.; Cavallaro, A. S.; Stahr, F.; Mahony, T. J.; Qiao, S. Z.; Mitter, N. Mesoporous silica nanoparticles act as a self-adjuvant for ovalbumin model antigen in mice. Small 2013, 9, 3138-3146.
Yan, S. Y.; Rolfe, B. E.; Zhang, B.; Mohammed, Y. H.; Gu, W. Y.; Xu, Z. P. Polarized immune responses modulated by layered double hydroxides nanoparticle conjugated with CpG. Biomaterials 2014, 35, 9508-9516.
Wang, T. Y.; Zou, M. J.; Jiang, H. T.; Ji, Z. S.; Gao, P.; Cheng, G. Synthesis of a novel kind of carbon nanoparticle with large mesopores and macropores and its application as an oral vaccine adjuvant. Eur. J. Pharm. Sci. 2011, 44, 653-659.
Giddam, A. K.; Zaman, M.; Skwarczynski, M.; Toth, I. Liposome-based delivery system for vaccine candidates: Constructing an effective formulation. Nanomedicine 2012, 7, 1877-1893.
Vasiliev, Y. M. Chitosan-based vaccine adjuvants: Incomplete characterization complicates preclinical and clinical evaluation. Expert Rev. Vaccines 2015, 14, 37-53.
Tobío, M.; Nolley, J.; Guo, Y. Y.; McIver, J.; Alonso, M. J. A novel system based on a poloxamer/PLGA blend as a tetanus toxoid delivery vehicle. Pharm. Res. 1999, 16, 682-688.
Moyano, D. F.; Goldsmith, M.; Solfiell, D. J.; Landesman- Milo, D.; Miranda, O. R.; Peer, D.; Rotello, V. M. Nanoparticle hydrophobicity dictates immune response. J. Am. Chem. Soc. 2012, 134, 3965-3967.
Kobayashi, K.; Wei, J. J.; Iida, R.; Ijiro, K.; Niikura, K. Surface engineering of nanoparticles for therapeutic applications. Polym. J. 2014, 46, 460-468.
Bianco, A.; Kostarelos, K.; Partidos, C. D.; Prato, M. Biomedical applications of functionalised carbon nanotubes. Chem. Commun. 2005, 571-577.
Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. J. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano. Res. 2009, 2, 85-120.
Parra, J.; Abad-Somovilla, A.; Mercader, J. V.; Taton, T. A.; Abad-Fuentes, A. Carbon nanotube-protein carriers enhance size-dependent self-adjuvant antibody response to haptens. J. Control. Release 2013, 170, 242-251.
Pantarotto, D.; Partidos, C. D.; Graff, R.; Hoebeke, J.; Briand, J. P.; Prato, M.; Bianco, A. Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc. 2003, 125, 6160-6164.
Kim, T. -W.; Chung, P. -W.; Slowing, I. I.; Tsunoda, M.; Yeung, E. S.; Lin, V. S. Y. Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells. Nano Lett. 2008, 8, 3724-3727.
Wang, J.; Hu, Z. B.; Xu, J. X.; Zhao, Y. L. Therapeutic applications of low-toxicity spherical nanocarbon materials. NPG Asia Mater. 2014, 6, e84.
Zhang, H. W.; Yu, M. H.; Song, H.; Noonan, O.; Zhang, J.; Yang, Y. N.; Zhou, L.; Yu, C. Z. Self-organized mesostructured hollow carbon nanoparticles via a surfactant-free sequential heterogeneous nucleation pathway. Chem. Mater. 2015, 27, 6297-6304.
Liu, H. L.; Zhang, Y. L.; Yang, N.; Zhang, Y. X.; Liu, X. Q.; Li, C. G.; Zhao, Y.; Wang, Y. G.; Zhang, G. G.; Yang, P. et al. A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt- TSC2-mTOR signaling. Cell Death Dis. 2011, 2, e159.
Fang, Y.; Gu, D.; Zou, Y.; Wu, Z. X.; Li, F. Y.; Che, R. C.; Deng, Y. H.; Tu, B.; Zhao, D. Y. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew. Chem., Int. Ed. 2010, 49, 7987-7991.
Demento, S. L.; Cui, W. G.; Criscione, J. M.; Stern, E.; Tulipan, J.; Kaech, S. M.; Fahmy, T. M. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials 2012, 33, 4957-4964.
Wang, T. Y.; Jiang, H. T.; Zhao, Q. F.; Wang, S. L.; Zou, M. J.; Cheng, G. Enhanced mucosal and systemic immune responses obtained by porous silica nanoparticles used as an oral vaccine adjuvant: Effect of silica architecture on immunological properties. Int. J. Pharm. 2012, 436, 351-358.
Musumeci, T.; Ventura, C. A.; Giannone, I.; Ruozi, B.; Montenegro, L.; Pignatello, R.; Puglisi, G. PLA/PLGA nanoparticles for sustained release of docetaxel. Int. J. Pharm. 2006, 325, 172-179.
Du, J.; Wang, S. T.; You, H.; Zhao, X. S. Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: A review. Environ. Toxicol. Pharmacol. 2013, 36, 451-462.
Gupta, R. K.; Relyveld, E. H.; Lindblad, E. B.; Bizzini, B.; Ben-Efraim, S.; Gupta, C. K. Adjuvants—A balance between toxicity and adjuvanticity. Vaccine 1993, 11, 293-306.
Wang, J.; Hu, Z. B.; Xu, J. X.; Zhao, Y. L. Therapeutic applications of low-toxicity spherical nanocarbon materials. NPG Asia Mater. 2014, 6, e84.
Fiorito, S.; Serafino, A.; Andreola, F.; Togna, A.; Togna, G. Toxicity and biocompatibility of carbon nanoparticles. J. Nanosci. Nanotechnol. 2006, 6, 591-599.
Wang, C.; Li, P.; Liu, L. L.; Pan, H.; Li, H. C.; Cai, L. T.; Ma, Y. F. Self-adjuvanted nanovaccine for cancer immunotherapy: Role of lysosomal rupture-induced ROS in MHC class Ⅰ antigen presentation. Biomaterials 2016, 79, 88-100.
Kalish, R. S. Antigen processing: The gateway to the immune response. J. Am. Acad. Dermatol. 1995, 32, 640-652.
Vyas, J. M.; Van der Veen, A. G.; Ploegh, H. L. The known unknowns of antigen processing and presentation. Nat. Rev. Immunol. 2008, 8, 607-618.
Mantegazza, A. R.; Magalhaes, J. G.; Amigorena, S.; Marks, M. S. Presentation of phagocytosed antigens by MHC class Ⅰ and Ⅱ. Traffic 2013, 14, 135-152.
Rafiq, K.; Bergtold, A.; Clynes, R. Immune complex-mediated antigen presentation induces tumor immunity. J. Clin. Invest. 2002, 110, 71-79.
Gu, L.; Ruff, L. E.; Qin, Z. T.; Corr, M.; Hedrick, S. M.; Sailor, M. J. Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody. Adv. Mater. 2012, 24, 3981-3987.
Yuba, E. Design of pH-sensitive polymer-modified liposomes for antigen delivery and their application in cancer immunotherapy. Polym. J. 2016, 48, 761-771.
Seong, S. Y.; Matzinger, P. Hydrophobicity: An ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol. 2004, 4, 469-478.
Vogel, F. R. Improving vaccine performance with adjuvants. Clin. Infect. Dis. 2000, 30, S266-S270.
Elgueta, R.; Benson, M. J.; De Vries, V. C.; Wasiuk, A.; Guo, Y. X.; Noelle, R. J. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 2009, 229, 152-172.
Kaiko, G. E.; Horvat, J. C.; Beagley, K. W.; Hansbro, P. M. Immunological decision-making: How does the immune system decide to mount a helper T-cell response? Immunology 2008, 123, 326-338.
Vella, A. T.; Dow, S.; Potter, T. A.; Kappler, J.; Marrack, P. Cytokine-induced survival of activated T cells in vitro and in vivo. Proc. Natl. Acad. Sci. USA 1998, 95, 3810-3815.
Sun, B. B.; Ji, Z. X.; Liao, Y. P.; Wang, M. Y.; Wang, X.; Dong, J. Y.; Chang, C. H.; Li, R. B.; Zhang, H. Y.; Nel, A. E. et al. Engineering an effective immune adjuvant by designed control of shape and crystallinity of aluminum oxyhydroxide nanoparticles. ACS Nano 2013, 7, 10834-10849.
Fujimaki, H.; Ozawa, M.; Imai, T.; Kubota, K.; Watanabe, N. Adjuvant effects of aluminum silicate on IgE and IgG1 antibody production in mice. Int. Arch. Allergy Immunol. 1984, 75, 351-356.
Whitekus, M. J.; Li, N.; Zhang, M.; Wang, M. Y.; Horwitz, M. A.; Nelson, S. K.; Horwitz, L. D.; Brechun, N.; Diaz- Sanchez, D.; Nel, A. E. Thiol antioxidants inhibit the adjuvant effects of aerosolized diesel exhaust particles in a murine model for ovalbumin sensitization. J. Immunol. 2002, 168, 2560-2567.
Liu, Q.; Jia, J. L.; Yang, T. Y.; Fan, Q. Z.; Wang, L. Y.; Ma, G. H. Pathogen-mimicking polymeric nanoparticles based on dopamine polymerization as vaccines adjuvants induce robust humoral and cellular immune responses. Small 2016, 12, 1744-1757.
Kono, H.; Rock, K. L. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 2008, 8, 279-289.
Chung, E. Y.; Kim, S. J.; Ma, X. J. Regulation of cytokine production during phagocytosis of apoptotic cells. Cell Res. 2006, 16, 154-161.