AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Strong and stiff Ag nanowire-chitosan composite films reinforced by Ag-S covalent bonds

Xiao-Feng Pan1Huai-Ling Gao2Yang Su1Ya-Dong Wu1Xiang-Ying Wang1Jing-Zhe Xue2Tao He1Yang Lu1( )Jian-Wei Liu2Shu-Hong Yu2 ( )
School of Chemistry and Chemical EngineeringHefei University of TechnologyHefei230009China
Division of Nanomaterials and ChemistryHefei National Laboratory for Physical Sciences at MicroscaleCollaborative Innovation Center of Suzhou Nano Science and TechnologyCAS Center for Excellence in NanoscienceDepartment of ChemistryUniversity of Science and Technology of ChinaHefei230026China
Show Author Information

Graphical Abstract

Abstract

High-performance composites containing various kinds of nanofibers as reinforcing building blocks have recently received considerable attention, owing to their superior mechanical properties. One of the effective strategies to reinforce these composites involves strengthening interfacial interactions via covalent bonds. However, in contrast to nanosheets, covalent bonds have been rarely used in nanofiber-reinforced composites. Herein, we report the macroscale fabrication of a series of Ag nanowire (NW)-thiolated chitosan (TCS) composite films via spray induced self-assembly. The obtained films were significantly strengthened by Ag-S covalent bonds formed between the Ag NWs and the thiol groups of TCS. The tensile strength of the optimized Ag NW-TCS film was up to 3.9 and 1.5 times higher compared with that of pure TCS and Ag NW-chitosan (CS) films, respectively.

Electronic Supplementary Material

Download File(s)
nr-11-1-410_ESM.pdf (4.7 MB)

References

1

Zhang, S. Y.; Regulacio, M. D.; Han, M. Y. Self-assembly of colloidal one-dimensional nanocrystals. Chem. Soc. Rev. 2014, 43, 2301-2323.

2

Liu, J. W.; Liang, H. W.; Yu, S. H. Macroscopic-scale assembled nanowire thin films and their functionalities. Chem. Rev. 2012, 112, 4770-4799.

3

Zhang, M.; Fang, S. L.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman, R. H. Strong, transparent, multifunctional, carbon nanotube sheets. Science 2005, 309, 1215-1219.

4

Jiang, K. L.; Li, Q. Q.; Fan, S. S. Nanotechnology: Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.

5

Wu, S. T.; Huang, K.; Shi, E. Z.; Xu, W. J.; Fang, Y.; Yang, Y. B.; Cao, A. Y. Soluble polymer-based, blown bubble assembly of singleand double-layer nanowires with shape control. ACS Nano 2014, 8, 3522-3530.

6

Nasibulin, A. G.; Kaskela, A.; Mustonen, K.; Anisimov, A. S.; Ruiz, V.; Kivistö, S.; Rackauskas, S.; Timmermans, M. Y.; Pudas, M.; Aitchison, B. et al. Multifunctional free-standing single-walled carbon nanotube films. ACS Nano 2011, 5, 3214-3221.

7

Xiao, L.; Chen, Z.; Feng, C.; Liu, L.; Bai, Z. Q.; Wang, Y.; Qian, L.; Zhang, Y. Y.; Li, Q. Q.; Jiang, K. L. et al. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett. 2008, 8, 4539-4545.

8

Wu, Z. Y.; Li, C.; Liang, H. W.; Zhang, Y. N.; Wang, X.; Chen, J. F.; Yu, S. H. Carbon nanofiber aerogels for emergent cleanup of oil spillage and chemical leakage under harsh conditions. Sci. Rep. 2014, 4, 4079.

9

Yu, G. H.; Cao, A. Y.; Lieber, C. M. Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol. 2007, 2, 372-377.

10

Saito, N.; Aoki, K.; Usui, Y.; Shimizu, M.; Hara, K.; Narita, N.; Ogihara, N.; Nakamura, K.; Ishigaki, N.; Kato, H. et al. Application of carbon fibers to biomaterials: A new era of nano-level control of carbon fibers after 30-years of development. Chem. Soc. Rev. 2011, 40, 3824-3834.

11

Cheng, Q. F.; Li, M. Z.; Jiang, L.; Tang, Z. Y. Bioinspired layered composites based on flattened double-walled carbon nanotubes. Adv. Mater. 2012, 24, 1838-1843.

12

Xu, J. Z.; Zhong, G. J.; Hsiao, B. S.; Fu, Q.; Li, Z. M. Low-dimensional carbonaceous nanofiller induced polymer crystallization. Prog. Polym. Sci. 2014, 39, 555-593.

13

Chae, H. G.; Sreekumar, T. V.; Uchida, T.; Kumar, S. A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber. Polymer 2005, 46, 10925-10935.

14

Siró, I.; Plackett, D. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 2010, 17, 459-494.

15

Zhang, T. J.; Ma, Y. R.; Chen, K.; Kunz, M.; Tamura, N.; Qiang, M.; Xu, J.; Qi, L. M. Structure and mechanical properties of a pteropod shell consisting of interlocked helical aragonite nanofibers. Angew. Chem., Int. Ed. 2011, 50, 10361-10365.

16

Shim, B. S.; Zhu, J.; Jan, E.; Critchley, K.; Ho, S. S.; Podsiadlo, P.; Sun, K.; Kotov, N. A. Multiparameter structural optimization of single-walled carbon nanotube composites: Toward record strength, stiffness, and toughness. ACS Nano 2009, 3, 1711-1722.

17

Doganay, D.; Coskun, S.; Kaynak, C.; Unalan, H. E. Electrical, mechanical and thermal properties of aligned silver nanowire/polylactide nanocomposite films. Compos. Part B 2016, 99, 288-296.

18

Tang, C. Y.; Liu, H. Q. Cellulose nanofiber reinforced poly(vinyl alcohol) composite film with high visible light transmittance. Compos. Part A 2008, 39, 1638-1643.

19

Zhu, J. Q.; Cao, W. X.; Yue, M. L.; Hou, Y.; Han, J. C.; Yang, M. Strong and stiff aramid nanofiber/carbon nanotube nanocomposites. ACS Nano 2015, 9, 2489-2501.

20

Zhao, X. L.; Xu, Z.; Zheng, B. N.; Gao, C. Macroscopic assembled, ultrastrong and H2SO4-resistant fibres of polymergrafted graphene oxide. Sci. Rep. 2013, 3, 3614.

21

Zhao, Y. L.; Stoddart, J. F. Noncovalent functionalization of single-walled carbon nanotubes. Acc. Chem. Res. 2009, 42, 1161-1171.

22

Beese, A. M.; Sarkar, S.; Nair, A.; Naraghi, M.; An, Z.; Moravsky, A.; Loutfy, R. O.; Buehler, M. J.; Nguyen, S. T.; Espinosa, H. D. Bio-inspired carbon nanotube-polymer composite yarns with hydrogen bond-mediated lateral interactions. ACS Nano 2013, 7, 3434-3446.

23

Batista, C. A. S.; Larson, R. G.; Kotov, N. A. Nonadditivity of nanoparticle interactions. Science 2015, 350, 1242477.

24

An, Z.; Compton, O. C.; Putz, K. W.; Brinson, L. C.; Nguyen, S. T. Bio-inspired borate cross-linking in ultra-stiff graphene oxide thin films. Adv. Mater. 2011, 23, 3842-3846.

25

Cheng, Q. F.; Wu, M. X.; Li, M. Z.; Jiang, L.; Tang, Z. Y. Ultratough artificial nacre based on conjugated cross-linked graphene oxide. Angew. Chem., Int. Ed. 2013, 52, 3750-3755.

26

Podsiadlo, P.; Kaushik, A. K.; Arruda, E. M.; Waas, A. M.; Shim, B. S.; Xu, J. D.; Nandivada, H.; Pumplin, B. G.; Lahann, J.; Ramamoorthy, A. et al. Ultrastrong and stiff layered polymer nanocomposites. Science 2007, 318, 80-83.

27

Wan, S. J.; Peng, J. S.; Li, Y. C.; Hu, H.; Jiang, L.; Cheng, Q. F. Use of synergistic interactions to fabricate strong, tough, and conductive artificial nacre based on graphene oxide and chitosan. ACS Nano 2015, 9, 9830-9836.

28

Xu, D. D.; Huang, J. C.; Zhao, D.; Ding, B. B.; Zhang, L.; Cai, J. High-flexibility, high-toughness double-cross-linked chitin hydrogels by sequential chemical and physical crosslinkings. Adv. Mater. 2016, 28, 5844-5849.

29

De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767-1774.

30

Lee, J. G.; Kim, D. Y.; Lee, J. H.; Sinha-Ray, S.; Yarin, A. L.; Swihart, M. T.; Kim, D. H.; Yoon, S. S. Production of flexible transparent conducting films of self-fused nanowires via one-step supersonic spraying. Adv. Funct. Mater. 2017, 27, 1602548.

31

Gao, H. L.; Xu, L.; Long, F.; Pan, Z.; Du, Y. X.; Lu, Y.; Ge, J.; Yu, S. H. Macroscopic free-standing hierarchical 3D architectures assembled from silver nanowires by ice templating. Angew. Chem., Int. Ed. 2014, 126, 4649-4654.

32

Liu, J. W.; Wang, J. L.; Wang, Z. H.; Huang, W. R.; Yu, S. H. Manipulating nanowire assembly for flexible transparent electrodes. Angew. Chem., Int. Ed. 2014, 53, 13477-13482.

33

Park, J. H.; Hwang, G. T.; Kim, S.; Seo, J.; Park, H. J.; Yu, K.; Kim, T. S.; Lee, K. J. Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester. Adv. Mater. 2017, 26, 1603473.

34

Celle, C.; Mayousse, C.; Moreau, E.; Basti, H.; Carella, A.; Simonato, J. P. Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Res. 2012, 5, 427-433.

35

Chung, C. H.; Song, T. B.; Bob, B.; Zhu, R.; Yang, Y. Solution-processed flexible transparent conductors composed of silver nanowire networks embedded in indium tin oxide nanoparticle matrices. Nano Res. 2012, 5, 805-814.

36

Chun, K. Y.; Oh, Y.; Rho, J.; Ahn, J. H.; Kim, Y. J.; Choi, H. R.; Baik, S. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 2010, 5, 853-857.

37

Ohta, S.; Glancy, D.; Chan, W. C. W. DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction. Science 2016, 351, 841-845.

38

Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.

39

Song, J. B.; Huang, P.; Chen, X. Y. Preparation of plasmonic vesicles from amphiphilic gold nanocrystals grafted with polymer brushes. Nat. Protoc. 2016, 11, 2287-2299.

40

DuChene, J. S.; Niu, W. X.; Abendroth, J. M.; Sun, Q.; Zhao, W. B.; Huo, F. W.; Wei, W. D. Halide anions as shapedirecting agents for obtaining high-quality anisotropic gold nanostructures. Chem. Mater. 2013, 25, 1392-1399.

41

Ansar, S. M.; Perera, G. S.; Gomez, P.; Salomon, G.; Vasquez, E. S.; Chu, I. W.; Zou, S. L.; Pittman, C. U.; Walters, K. B.; Zhang, D. M. Mechanistic study of continuous reactive aromatic organothiol adsorption onto silver nanoparticles. J. Phys. Chem. C 2013, 117, 27146-27154.

42

Cai, J. G.; Qi, L. M. Recent advances in antireflective surfaces based on nanostructure arrays. Mater. Horiz. 2015, 2, 37-53.

43

Miles, K. B.; Ball, R. L.; Matthew, H. W. T. Chitosan films with improved tensile strength and toughness from N-acetylcysteine mediated disulfide bonds. Carbohydr. Polym. 2016, 139, 1-9.

44

Wang, X.; Zheng, C.; Wu, Z. M.; Teng, D. G.; Zhang, X.; Wang, Z.; Li, C. X. Chitosan-NAC nanoparticles as a vehicle for nasal absorption enhancement of insulin. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 88, 150-161.

45

Chen, K.; Shi, B.; Yue, Y. H.; Qi, J. J.; Guo, L. Binary synergy strengthening and toughening of bio-inspired nacrelike graphene oxide/sodium alginate composite paper. ACS Nano 2015, 9, 8165-8175.

46

Richardson, J. J.; Börnmalm, M.; Caruso, F. Technologydriven layer-by-layer assembly of nanofilms. Science 2015, 348, aaa2491.

47

Shahzadi, K.; Wu, L.; Ge, X. S.; Zhao, F. H.; Li, H.; Pang, S. P.; Jiang, Y. J.; Guan, J.; Mu, X. D. Preparation and characterization of bio-based hybrid film containing chitosan and silver nanowires. Carbohydr. Polym. 2016, 137, 732-738.

48

Yang, C.; Gu, H. W.; Lin, W.; Yuen, M. M.; Wong, C. P.; Xiong, M. Y.; Gao, B. Silver nanowires: From scalable synthesis to recyclable foldable electronics. Adv. Mater. 2011, 23, 3052-3056.

49

Wei, C. Z.; Wang, L. F.; Dang, L. Y.; Chen, Q.; Lu, Q. Y.; Gao, F. Bottom-up-then-up-down route for multi-level construction of hierarchical Bi2S3 superstructures with magnetism alteration. Sci. Rep. 2015, 5, 10599.

50

Chauhan, K.; Sharma, R.; Dharela, R.; Chauhan, G. S.; Singhal, R. K. Chitosan-thiomer stabilized silver nanocomposites for antimicrobial and antioxidant applications. RSC Adv. 2016, 6, 75453-75464.

51

Li, S. M.; Wang, Y. S.; Hsiao, S. T.; Liao, W. H.; Lin, C. W.; Yang, S. Y.; Tien, H. W.; Ma, C. C. M.; Hu, C. C. Fabrication of a silver nanowire-reduced graphene oxidebased electrochemical biosensor and its enhanced sensitivity in the simultaneous determination of ascorbic acid, dopamine, and uric acid. J. Mater. Chem. C 2015, 3, 9444-9453.

52

Ramachandramoorthy, R.; Gao, W.; Bernal, R.; Espinosa, H. High strain rate tensile testing of silver nanowires: Ratedependent brittle-to-ductile transition. Nano Lett. 2016, 16, 255-263.

53

Wang, J. F.; Cheng, Q. F.; Lin, L.; Chen, L. F.; Jiang, L. Understanding the relationship of performance with nanofiller content in the biomimetic layered nanocomposites. Nanoscale 2013, 5, 6356-6362.

54

Yao, H. B.; Tan, Z. H.; Fang, H. Y.; Yu, S. H. Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks. Angew. Chem., Int. Ed. 2010, 49, 10127-10131.

55

Yao, H. B.; Fang, H. Y.; Tan, Z. H.; Wu, L. H.; Yu, S. H. Biologically inspired, strong, transparent, and functional layered organic-inorganic hybrid films. Angew. Chem., Int. Ed. 2010, 49, 2140-2145.

56

Liu, A. D.; Berglund, L. A. Clay nanopaper composites of nacre-like structure based on montmorrilonite and cellulose nanofibers-improvements due to chitosan addition. Carbohydr. Polym. 2012, 87, 53-60.

57

Fernandes, S. C. M.; Freire, C. S. R.; Silvestre, A. J. D.; Neto, C. P.; Gandini, A.; Berglund, L. A.; Salmen, L. Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr. Polym. 2010, 81, 394-401.

58

Wu, T. F.; Farnood, R.; O'Kelly, K.; Chen, B. Q. Mechanical behavior of transparent nanofibrillar cellulose-chitosan nanocomposite films in dry and wet conditions. J. Mech. Behav. Biomed. Mater. 2014, 32, 279-286.

59

Khan, A.; Khan, R. A.; Salmieri, S.; Le Tien, C.; Riedl, B.; Bouchard, J.; Chauve, G.; Tan, V.; Kamal, M. R.; Lacroix, M. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr. Polym. 2012, 90, 1601-1608.

60

de Mesquita, J. P.; Donnici, C. L.; Teixeira, I. F.; Pereira, F. V. Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals. Carbohydr. Polym. 2012, 90, 210-217.

61

Han, D. L.; Yan, L. F.; Chen, W. F.; Li, W. Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydr. Polym. 2011, 83, 653-658.

62

Yang, X. M.; Tu, Y. F.; Li, L. A.; Shang, S. M.; Tao, X. M. Well-dispersed chitosan/graphene oxide nanocomposites. ACS Appl. Mater. Interfaces 2010, 2, 1707-1713.

Nano Research
Pages 410-419
Cite this article:
Pan X-F, Gao H-L, Su Y, et al. Strong and stiff Ag nanowire-chitosan composite films reinforced by Ag-S covalent bonds. Nano Research, 2018, 11(1): 410-419. https://doi.org/10.1007/s12274-017-1644-x

775

Views

32

Crossref

N/A

Web of Science

35

Scopus

1

CSCD

Altmetrics

Received: 17 March 2017
Revised: 19 April 2017
Accepted: 23 April 2017
Published: 15 August 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return