AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent advances in gas-involved in situ studies via transmission electron microscopy

Ying Jiang1,2Zhengfei Zhang1Wentao Yuan1Xun Zhang1Yong Wang1( )Ze Zhang1( )
Center of Electron Microscopy and State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
Materials Genome InstituteShanghai UniversityShanghai200444China
Show Author Information

Graphical Abstract

Abstract

Gases that are widely used in research and industry have a significant effect on both the configuration of solid materials and the evolution of reactive systems. Traditional studies on gas–solid interactions have mostly been static and post-mortem and unsatisfactory for elucidating the real active states during the reactions. Recent developments of controlled-atmosphere transmission electron microscopy (TEM) have led to impressive progress towards the simulation of real-world reaction environments, allowing the atomic-scale recording of dynamic events. In this review, on the basis of the in situ research of our group, we outline the principles and features of the controlled-atmosphere TEM techniques and summarize the significant recent progress in the research activities on gas–solid interactions, including nanowire growth, catalysis, and metal failure. Additionally, the challenges and opportunities in the real-time observations on such platform are discussed.

References

1

Chen, M. S.; Goodman, D. W. Promotional effects of Au in Pd-Au catalysts for vinyl acetate synthesis. Chinese J. Catal. 2008, 29, 1178–1186.

2

Edwards, J. K.; Freakley, S. J.; Lewis, R. J.; Pritchard, J. C.; Hutchings, G. J. Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Catal. Today 2015, 248, 3–9.

3

Keav, S.; Matam, S. K.; Ferri, D.; Weidenkaff, A. Structured perovskite-based catalysts and their application as three-way catalytic converters—A review. Catalysts 2014, 4, 226–255.

4

Wang, J. H.; Chen, H.; Hu, Z. C.; Yao, M. F.; Li, Y. D. A review on the Pd-based three-way catalyst. Catal. Rev. 2015, 57, 79–144.

5

Minh, N. Q. Ceramic fuel-cells. J. Am. Ceram. Soc. 1993, 76, 563–588.

6

Adler, S. B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 2004, 104, 4791–4844.

7

Mirzaei, A.; Janghorban, K.; Hashemi, B.; Neri, G. Metal- core@metal oxide-shell nanomaterials for gas-sensing applications: A review. J. Nanopart. Res. 2015, 17, 371.

8

Zhang, J.; Liu, X. H.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795–831.

9

Klenowicz, Z.; Darowicki, K. Waste incinerators: Corrosion problems and construction materials: A review. Corros. Rev. 2001, 19, 467–491.

10

Venezuela, J.; Liu, Q. L.; Zhang, M. X.; Zhou, Q. J.; Atrens, A. A review of hydrogen embrittlement of martensitic advanced high-strength steels. Corros. Rev. 2016, 34, 153–186.

11

Ren, J. T.; Tilley, R. D. Shape-controtled growth of platinum nanoparticles. Small 2007, 3, 1508–1512.

12

Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.

13

Dai, Y.; Mu, X. L.; Tan, Y. M.; Lin, K. Q.; Yang, Z. L.; Zheng, N. F.; Fu, G. Carbon monoxide-assisted synthesis of single-crystalline Pd tetrapod nanocrystals through hydride formation. J. Am. Chem. Soc. 2012, 134, 7073–7080.

14

Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed, M. A. Shape-controlled synthesis of colloidal platinum nanoparticles. Science 1996, 272, 1924–1925.

15

Mtangi, W.; Auret, F. D.; Meyer, W. E.; Legodi, M. J.; van Rensburg, P. J. J.; Coelho, S. M. M.; Diale, M.; Nel, J. M. Effects of hydrogen, oxygen, and argon annealing on the electrical properties of ZnO and ZnO devices studied by current-voltage, deep level transient spectroscopy, and Laplace DLTS. J. Appl. Phys. 2012, 111, 094504.

16

Yu, W. Y.; Zhang, L.; Mullen, G. M.; Evans, E. J., Jr.; Henkelman, G.; Mullins, C. B. Effect of annealing in oxygen on alloy structures of Pd-Au bimetallic model catalysts. Phys. Chem. Chem. Phys. 2015, 17, 20588–20596.

17

Over, H.; Kim, Y. D.; Seitsonen, A. P.; Wendt, S.; Lundgren, E.; Schmid, M.; Varga, P.; Morgante, A.; Ertl, G. Atomic-scale structure and catalytic reactivity of the RuO2(110) surface. Science 2000, 287, 1474–1476.

18

Yamauchi, M.; Tsukuda, T. Production of an ordered (B2) CuPd nanoalloy by low-temperature annealing under hydrogen atmosphere. Dalton Trans. 2011, 40, 4842–4845.

19

Mouaddib, N.; Feumi-Jantou, C.; Garbowski, E.; Primet, M. Catalytic oxidation of methane over palladium supported on alumina: Influence of the oxygen-to-methane ratio. Appl. Catal. A-Gen. 1992, 87, 129–144.

20

Vendelbo, S. B.; Elkjær, C. F.; Falsig, H.; Puspitasari, I.; Dona, P.; Mele, L.; Morana, B.; Nelissen, B. J.; van Rijn, R.; Creemer, J. F. et al. Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat. Mater. 2014, 13, 884–890.

21

Fujita, T.; Tokunaga, T.; Zhang, L.; Li, D. W.; Chen, L. Y.; Arai, S.; Yamamoto, Y.; Hirata, A.; Tanaka, N.; Ding, Y. et al. Atomic observation of catalysis-induced nanopore coarsening of nanoporous gold. Nano Lett. 2014, 14, 1172–1177.

22

Sinclair, R. In situ high-resolution transmission electron microscopy of material reactions. MRS Bull. 2013, 38, 1065–1071.

23

van Huis, M. A.; Kunneman, L. T.; Overgaag, K.; Xu, Q.; Pandraud, G.; Zandbergen, H. W.; Vanmaekelbergh, D. Low-temperature nanocrystal unification through rotations and relaxations probed by in situ transmission electron microscopy. Nano Lett. 2008, 8, 3959–3963.

24

Jiang, Y.; Wang, Y.; Zhang, Y. Y.; Zhang, Z. F.; Yuan, W. T.; Sun, C. H.; Wei, X.; Brodsky, C. N.; Tsung, C. K.; Li, J. X. et al. Direct observation of Pt nanocrystal coalescence induced by electron-excitation-enhanced van der waals interactions. Nano Res. 2014, 7, 308–314.

25

Benavidez, A. D.; Kovarik, L.; Genc, A.; Agrawal, N.; Larsson, E. M.; Hansen, T. W.; Karim, A. M.; Datye, A. K. Environmental transmission electron microscopy study of the origins of anomalous particle size distributions in supported metal catalysts. ACS Catal. 2012, 2, 2349–2356.

26

Huang, J. Y.; Zhong, L.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Subramanian, A. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515–1520.

27

Liu, X. H.; Wang, J. W.; Huang, S.; Fan, F. F.; Huang, X.; Liu, Y.; Krylyuk, S.; Yoo, J.; Dayeh, S. A.; Davydov, A. V. et al. In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 2012, 7, 749–756.

28

Meister, S.; Kim, S.; Cha, J. J.; Wong, H. S. P.; Cui, Y. In situ transmission electron microscopy observation of nanostructural changes in phase-change memory. ACS Nano 2011, 5, 2742–2748.

29

Han, X. D.; Zheng, K.; Zhang, Y. F.; Zhang, X. N.; Zhang, Z.; Wang, Z. L. Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 2007, 19, 2112–2118.

30

Liu, P.; Mao, S. C.; Wang, L. H.; Han, X. D.; Zhang, Z. Direct dynamic atomic mechanisms of strain-induced grain rotation in nanocrystalline, textured, columnar-structured thin gold films. Scr. Mater. 2011, 64, 343–346.

31

Wang, L. H.; Liu, P.; Guan, P. F.; Yang, M. J.; Sun, J. L.; Cheng, Y. Q.; Hirata, A.; Zhang, Z.; Ma, E.; Chen, M. W. et al. In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nat. Commun. 2013, 4, 2413.

32

Yue, Y. H.; Chen, N. K.; Li, X. B.; Zhang, S. B.; Zhang, Z.; Chen, M. W.; Han, X. D. Crystalline liquid and rubber-like behavior in Cu nanowires. Nano Lett. 2013, 13, 3812–3816.

33

Zhang, Y.; Han, X.; Zheng, K.; Zhang, Z.; Zhang, X.; Fu, J.; Ji, Y.; Hao, Y.; Guo, X.; Wang, Z. L. Direct observation of super-plasticity of beta-SiC nanowires at low temperature. Adv. Funct. Mater. 2007, 17, 3435–3440.

34

Zheng, K.; Wang, C. C.; Cheng, Y. Q.; Yue, Y. H.; Han, X. D.; Zhang, Z.; Shan, Z. W.; Mao, S. X.; Ye, M. M.; Yin, Y. D. et al. Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat. Commun. 2010, 1, 24.

35

Marton, L. La microscopie electronique des objets biologiques. Bull. Acad. R. Belg. Cl. Sci. 1935, 21, 553–564.

36

Flower, H. M. High-voltage electron-microscopy of environmental reactions. J. Microsc. 1973, 97, 171–190.

37

Sharma, R.; Crozier, P. A. Environmental transmission electron microscopy in nanotechnology. In Handbook of Microscopy for Nanotechnology; Yao, N.; Wang, Z. L., Eds.; Springer: New York, 2005; pp 531–565.

38

Gai, P. L.; Boyes, E. D.; Helveg, S.; Hansen, P. L.; Giorgio, S.; Henry, C. R. Atomic-resolution environmental transmission electron microscopy for probing gas-solid reactions in heterogeneous catalysis. MRS Bull. 2007, 32, 1044–1050.

39

Tao, F. F.; Crozier, P. A. Atomic-scale observations of catalyst structures under reaction conditions and during catalysis. Chem. Rev. 2016, 116, 3487–3539.

40

Jinschek, J. R. Advances in the environmental transmission electron microscope (ETEM) for nanoscale in situ studies of gas–solid interactions. Chem. Commun. 2014, 50, 2696–2706.

41

Takeda, S.; Yoshida, H. Atomic-resolution environmental TEM for quantitative in-situ microscopy in materials science. Microscopy 2013, 62, 193–203.

42

Zhang, S. R.; Nguyen, L.; Zhu, Y.; Zhan, S. H.; Tsung, C. K.; Tao, F. In-situ studies of nanocatalysis. Acc. Chem. Res. 2013, 46, 1731–1739.

43

Hansen, T. W.; Wagner, J. B. Controlled Atmosphere Transmission Electron Microscopy; Springer International Publishing: Switzerland, 2016.

44

Taheri, M. L.; Stach, E. A.; Arslan, I.; Crozier, P. A.; Kabius, B. C.; LaGrange, T.; Minor, A. M.; Takeda, S.; Tanase, M.; Wagner, J. B. et al. Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 2016, 170, 86–95.

45

Alsem, D.; Salmon, N. J.; Unocic, R. R.; Veith, G. M.; More, K. L. In-situ liquid and gas transmission electron microscopy of nano-scale materials. Microsc. Microanal. 2012, 18, 1158–1159.

46

Panciera, F.; Norton, M. M.; Alam, S. B.; Hofmann, S.; Mølhave, K.; Ross, F. M. Controlling nanowire growth through electric field-induced deformation of the catalyst droplet. Nat. Commun. 2016, 7, 12271.

47

Ross, F. M. Controlling nanowire structures through real time growth studies. Rep. Prog. Phys. 2010, 73, 114501.

48

Helveg, S.; López-Cartes, C.; Sehested, J.; Hansen, P. L.; Clausen, B. S.; Rostrup-Nielsen, J. R.; Abild-Pedersen, F.; Nørskov, J. K. Atomic-scale imaging of carbon nanofibre growth. Nature 2004, 427, 426–429.

49

Malladi, S.; Shen, C. G.; Xu, Q.; de Kruijff, T.; Yücelen, E.; Tichelaar, F.; Zandbergen, H. Localised corrosion in aluminium alloy 2024-T3 using in situ TEM. Chem. Commun. 2013, 49, 10859–10861.

50

Xie, D. G.; Wang, Z. J.; Sun, J.; Li, J.; Ma, E.; Shan, Z. W. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface. Nat. Mater. 2015, 14, 899–903.

51

Baldi, A.; Narayan, T. C.; Koh, A. L.; Dionne, J. A. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat. Mater. 2014, 13, 1143–1148.

52

Narayan, T. C.; Baldi, A.; Koh, A. L.; Sinclair, R.; Dionne, J. A. Reconstructing solute-induced phase transformations within individual nanocrystals. Nat. Mater. 2016, 15, 768–774.

53

Crozier, P. A.; Sharma, R.; Datye, A. K. Oxidation and reduction of small palladium particles on silica. Microsc. Microanal. 1998, 4, 278–285.

54

Koh, A. L.; Gidcumb, E.; Zhou, O.; Sinclair, R. Observations of carbon nanotube oxidation in an aberration-corrected environmental transmission electron microscope. ACS Nano 2013, 7, 2566–2572.

55

Sun, L.; Noh, K. W.; Wen, J. -G.; Dillon, S. J. In situ transmission electron microscopy observation of silver oxidation in ionized/atomic gas. Langmuir 2011, 27, 14201– 14206.

56

Yokosawa, T.; Tichelaar, F. D.; Zandbergen, H. W. In-situ TEM on epitaxial and non-epitaxial oxidation of Pd and reduction of PdO at P = 0.2–0.7 bar and T = 20–650 ℃. Eur. J. Inorg. Chem. 2016, 2016, 3094–3102.

57

Yoshida, H.; Omote, H.; Takeda, S. Oxidation and reduction processes of platinum nanoparticles observed at the atomic scale by environmental transmission electron microscopy. Nanoscale 2014, 6, 13113–13118.

58

Zhou, G. W.; Luo, L. L.; Li, L.; Ciston, J.; Stach, E. A.; Saidi, W. A.; Yang, J. C. In situ atomic-scale visualization of oxide islanding during oxidation of Cu surfaces. Chem. Commun. 2013, 49, 10862–10864.

59

LaGrow, A. P.; Ward, M. R.; Lloyd, D. C.; Gai, P. L.; Boyes, E. D. Visualizing the Cu/Cu2O interface transition in nanoparticles with environmental scanning transmission electron microscopy. J. Am. Chem. Soc. 2017, 139, 179–185.

60

Zhang, X. F.; Kamino, T. Imaging gas–solid interactions in an atomic resolution environmental TEM. Microsc. Today 2006, 14, 16–18.

61

Boyes, E. D.; Gai, P. L. Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 1997, 67, 219–232.

62

Gai, P. L.; Kourtakis, K.; Ziemecki, S. In situ real-time environmental high resolution electron microscopy of nanometer size novel xerogel catalysts for hydrogenation reactions in Nylon 6, 6. Microsc. Microanal. 2000, 6, 335–342.

63

Kamino, T.; Yaguchi, T.; Konno, M.; Watabe, A.; Marukawa, T.; Mima, T.; Kuroda, K.; Saka, H.; Arai, S.; Makino, H. et al. Development of a gas injection/specimen heating holder for use with transmission electron microscope. J. Electron Microsc. 2005, 54, 497–503.

64

Jinschek, J. R.; Helveg, S. Image resolution and sensitivity in an environmental transmission electron microscope. Micron 2012, 43, 1156–1168.

65

Creemer, J. F.; Helveg, S.; Hoveling, G. H.; Ullmann, S.; Molenbroek, A. M.; Sarro, P. M.; Zandbergen, H. W. Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 2008, 108, 993–998.

66

Pérez Garza, H. H.; Morsink, D.; Xu, J.; Sholkina, M.; Pivak, Y.; Pen, M.; van Weperen, S.; Xu, Q. MEMS-based nanoreactor for in situ analysis of solid–gas interactions inside the transmission electron microscope. Micro Nano Lett. 2017, 12, 69–75.

67

Li, D. S.; Nielsen, M. H.; De Yoreo, J. J. Design, fabrication, and applications of in situ fluid cell TEM. In Research Methods in Biomineralization Science; De Yoreo, J. J., Ed.; Academic Press Inc. : San Diego, 2013; pp 147–164.

68

de Jonge, N.; Pfaff, M.; Peckys, D. B. Practical aspects of transmission electron microscopy in liquid. In Advances in Imaging and Electron Physics; Hawkes, P. W., Ed.; Academic Press Inc. : San Diego, 2014; Vol. 186, pp 1–37.

69

Liao, H. G.; Zheng, H. M. Liquid cell transmission electron microscopy. Annu. Rev. Phys. Chem. 2016, 67, 719–747.

70

de Jonge, N.; Ross, F. M. Electron microscopy of specimens in liquid. Nat. Nanotechnol. 2011, 6, 695–704.

71

Yokosawa, T.; Alan, T.; Pandraud, G.; Dam, B.; Zandbergen, H. In-situ TEM on (de)hydrogenation of Pd at 0.5–4.5 bar hydrogen pressure and 20–400 ℃. Ultramicroscopy 2012, 112, 47–52.

72

Yaguchi, T.; Suzuki, M.; Watabe, A.; Nagakubo, Y.; Ueda, K.; Kamino, T. Development of a high temperature- atmospheric pressure environmental cell for high-resolution TEM. J. Electron Microsc. 2011, 60, 217–225.

73

Giorgio, S.; Sao Joao, S.; Nitsche, S.; Chaudanson, D.; Sitja, G.; Henry, C. R. Environmental electron microscopy (ETEM) for catalysts with a closed E-cell with carbon windows. Ultramicroscopy 2006, 106, 503–507.

74

de Jonge, N.; Bigelow, W. C.; Veith, G. M. Atmospheric pressure scanning transmission electron microscopy. Nano Lett. 2010, 10, 1028–1031.

75

Xin, H. L.; Niu, K. Y.; Alsem, D. H.; Zheng, H. M. In situ TEM study of catalytic nanoparticle reactions in atmospheric pressure gas environment. Microsc. Microanal. 2013, 19, 1558–1568.

76

Mehraeen, S.; McKeown, J. T.; Deshmukh, P. V.; Evans, J. E.; Abellan, P.; Xu, P. H.; Reed, B. W.; Taheri, M. L.; Fischione, P. E.; Browning, N. D. A (S)TEM gas cell holder with localized laser heating for in situ experiments. Microsc. Microanal. 2013, 19, 470–478.

77

Alan, T.; Yokosawa, T.; Gaspar, J.; Pandraud, G.; Paul, O.; Creemer, F.; Sarro, P. M.; Zandbergen, H. W. Micro- fabricated channel with ultra-thin yet ultra-strong windows enables electron microscopy under 4-bar pressure. Appl. Phys. Lett. 2012, 100, 081903.

78

Ueda, K.; Kawasaki, T.; Hasegawa, H.; Tanji, T.; Ichihashi, M. First observation of dynamic shape changes of a gold nanoparticle catalyst under reaction gas environment by transmission electron microscopy. Surf. Interface Anal. 2008, 40, 1725–1727.

79

Yang, J. L.; Paul, O. Fracture properties of LPCVD silicon nitride thin films from the load-deflection of long membranes. Sensor. Actuat. A-Phys. 2002, 97–98, 520–526.

80

Wakasugi, T.; Isobe, S.; Umeda, A.; Wang, Y. M.; Hashimoto, N.; Ohnuki, S. Development and application of a window-type environmental cell in high voltage electron microscope. J. Alloys Compd. 2013, 580, S127–S130.

81

McDonald, M. L.; Gibson, J. M.; Unterwald, F. C. Design of an ultrahigh-vacuum specimen environment for high- resolution transmission electron microscopy. Rev. Sci. Instrum. 1989, 60, 700–707.

82

Hammar, M.; LeGoues, F. K.; Tersoff, J.; Reuter, M. C.; Tromp, R. M. In situ ultrahigh vacuum transmission electron microscopy studies of hetero-epitaxial growth. I. Si(001)/ Ge. Surf. Sci. 1996, 349, 129–144.

83

Wu, Y. Y.; Yang, P. D. Direct observation of vapor-liquid- solid nanowire growth. J. Am. Chem. Soc. 2001, 123, 3165–3166.

84

Stach, E. A.; Pauzauskie, P. J.; Kuykendall, T.; Goldberger, J.; He, R. R.; Yang, P. D. Watching GaN nanowires grow. Nano Lett. 2003, 3, 867–869.

85

Taheri, M. L.; Reed, B. W.; LaGrange, T. B.; Browning, N. D. In situ laser synthesis of Si nanowires in the dynamic TEM. Small 2008, 4, 2187–2190.

86

Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.

87

Kim, B. J.; Tersoff, J.; Wen, C. Y.; Reuter, M. C.; Stach, E. A.; Ross, F. M. Determination of size effects during the phase transition of a nanoscale Au-Si eutectic. Phys. Rev. Lett. 2009, 103, 155701.

88

Kim, B. J.; Tersoff, J.; Kodambaka, S.; Reuter, M. C.; Stach, E. A.; Ross, F. M. Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth. Science 2008, 322, 1070–1073.

89

Li, A.; Sibirev, N. V.; Ercolani, D.; Dubrovskii, V. G.; Sorba, L. Readsorption assisted growth of InAs/InSb heterostructured nanowire arrays. Cryst. Growth Des. 2013, 13, 878–882.

90

Ross, F. M.; Tersoff, J.; Reuter, M. C. Sawtooth faceting in silicon nanowires. Phys. Rev. Lett. 2005, 95, 146104.

91

Hannon, J. B.; Kodambaka, S.; Ross, F. M.; Tromp, R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 2006, 440, 69–71.

92

Kodambaka, S.; Hannon, J. B.; Tromp, R. M.; Ross, F. M. Control of Si nanowire growth by oxygen. Nano Lett. 2006, 6, 1292–1296.

93

Schwarz, K. W.; Tersoff, J. Elementary processes in nanowire growth. Nano Lett. 2011, 11, 316–320.

94

Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M. Germanium nanowire growth below the eutectic temperature. Science 2007, 316, 729–732.

95

Gamalski, A. D.; Tersoff, J.; Kodambaka, S.; Zakharov, D. N.; Ross, F. M.; Stach, E. A. The role of surface passivation in controlling Ge nanowire faceting. Nano Lett. 2015, 15, 8211–8216.

96

Diaz, R. E.; Sharma, R.; Jarvis, K.; Zhang, Q. L.; Mahajan, S. Direct observation of nucleation and early stages of growth of GaN nanowires. J. Cryst. Growth 2012, 341, 1–6.

97

Gamalski, A. D.; Tersoff, J.; Stach, E. A. Atomic resolution in situ imaging of a double-bilayer multistep growth mode in gallium nitride nanowires. Nano Lett. 2016, 16, 2283–2288.

98

Chou, Y. C.; Hillerich, K.; Tersoff, J.; Reuter, M. C.; Dick, K. A.; Ross, F. M. Atomic-scale variability and control of Ⅲ-V nanowire growth kinetics. Science 2014, 343, 281–284.

99

Wen, C. Y.; Tersoff, J.; Hillerich, K.; Reuter, M. C.; Park, J. H.; Kodambaka, S.; Stach, E. A.; Ross, F. M. Periodically changing morphology of the growth interface in Si, Ge, and GaP nanowires. Phys. Rev. Lett. 2011, 107, 025503.

100

Lenrick, F.; Ek, M.; Deppert, K.; Samuelson, L.; Reine Wallenberg, L. Straight and kinked InAs nanowire growth observed in situ by transmission electron microscopy. Nano Res. 2014, 7, 1188–1194.

101

Hofmann, S.; Sharma, R.; Wirth, C. T.; Cervantes-Sodi, F.; Ducati, C.; Kasama, T.; Dunin-Borkowski, R. E.; Drucker, J.; Bennett, P.; Robertson, J. Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth. Nat. Mater. 2008, 7, 372–375.

102

Wen, C. Y.; Reuter, M. C.; Bruley, J.; Tersoff, J.; Kodambaka, S.; Stach, E. A.; Ross, F. M. Formation of compositionally abrupt axial heterojunctions in silicon- germanium nanowires. Science 2009, 326, 1247–1250.

103

Wen, C. Y.; Reuter, M. C.; Tersoff, J.; Stach, E. A.; Ross, F. M. Structure, growth kinetics, and ledge flow during vapor-solid-solid growth of copper-catalyzed silicon nanowires. Nano Lett. 2010, 10, 514–519.

104

Chou, Y. C.; Wen, C. Y.; Reuter, M. C.; Su, D.; Stach, E. A.; Ross, F. M. Controlling the growth of Si/Ge nanowires and heterojunctions using silver-gold alloy catalysts. ACS Nano 2012, 6, 6407–6415.

105

Chou, Y. C.; Panciera, F.; Reuter, M. C.; Stach, E. A.; Ross, F. M. Nanowire growth kinetics in aberration corrected environmental transmission electron microscopy. Chem. Commun. 2016, 52, 5686–5689.

106

Chen, C. L.; Mori, H. In situ TEM observation of the growth and decomposition of monoclinic W18O49 nanowires. Nanotechnology 2009, 20, 285604.

107

Tokunaga, T.; Kawamoto, T.; Tanaka, K.; Nakamura, N.; Hayashi, Y.; Sasaki, K.; Kuroda, K.; Yamamoto, T. Growth and structure analysis of tungsten oxide nanorods using environmental TEM. Nanoscale Res. Lett. 2012, 7, 85.

108

Duchstein, L. D. L.; Damsgaard, C. D.; Hansen, T. W.; Wagner, J. B. Low-pressure ETEM studies of Au assisted MgO nanorod growth. J. Phys. 2014, 522, 012010.

109

Rackauskas, S.; Jiang, H.; Wagner, J. B.; Shandakov, S. D.; Hansen, T. W.; Kauppinen, E. I.; Nasibulin, A. G. In situ study of noncatalytic metal oxide nanowire growth. Nano Lett. 2014, 14, 5810–5813.

110

Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M. Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires. Phys. Rev. Lett. 2006, 96, 096105.

111

Wen, C. Y.; Tersoff, J.; Reuter, M. C.; Stach, E. A.; Ross, F. M. Step-flow kinetics in nanowire growth. Phys. Rev. Lett. 2010, 105, 195502.

112

Schwarz, K. W.; Tersoff, J.; Kodambaka, S.; Ross, F. M. Jumping-catalyst dynamics in nanowire growth. Phys. Rev. Lett. 2014, 113, 055501.

113

Kolibal, M.; Vystavěl, T.; Varga, P.; Šikola, T. Real-time observation of collector droplet oscillations during growth of straight nanowires. Nano Lett. 2014, 14, 1756–1761.

114

Oh, S. H.; Chisholm, M. F.; Kauffmann, Y.; Kaplan, W. D.; Luo, W. D.; Rühle, M.; Scheu, C. Oscillatory mass transport in vapor-liquid-solid growth of sapphire nanowires. Science 2010, 330, 489–493.

115

Gamalski, A. D.; Ducati, C.; Hofmann, S. Cyclic supersaturation and triple phase boundary dynamics in germanium nanowire growth. J. Phys. Chem. C 2011, 115, 4413–4417.

116

Zhang, Z. F.; Wang, Y.; Li, H. B.; Yuan, W. T.; Zhang, X. F.; Sun, C. H.; Zhang, Z. Atomic-scale observation of vapor–solid nanowire growth via oscillatory mass transport. ACS Nano 2016, 10, 763–769.

117

Zhang, Z. F.; Chen, J. L.; Li, H. B.; Zhang, Z.; Wang, Y. Vapor–solid nanotube growth via sidewall epitaxy in an environmental transmission electron microscope. Cryst. Growth Des. 2017, 17, 11–15.

118

Schwarz, K. W.; Tersoff, J. From droplets to nanowires: Dynamics of vapor-liquid-solid growth. Phys. Rev. Lett. 2009, 102, 206101.

119

Tersoff, J.; Denier van der Gon, A. W.; Tromp, R. M. Shape oscillations in growth of small crystals. Phys. Rev. Lett. 1993, 70, 1143–1146.

120

Yuan, W. T.; Yu, J.; Li, H. B.; Zhang, Z.; Sun, C. H.; Wang, Y. In situ TEM observation of dissolution and regrowth dynamics of MoO2 nanowires under oxygen. Nano Res. 2017, 10, 397–404.

121

Madras, P.; Dailey, E.; Drucker, J. Kinetically induced kinking of vapor−liquid−solid grown epitaxial Si nanowires. Nano Lett. 2009, 9, 3826–3830.

122

Hillerich, K.; Dick, K. A.; Wen, C. Y.; Reuter, M. C.; Kodambaka, S.; Ross, F. M. Strategies to control morphology in hybrid group Ⅲ-V/group IV heterostructure nanowires. Nano Lett. 2013, 13, 903–908.

123

Schwarz, K. W.; Tersoff, J. Multiplicity of steady modes of nanowire growth. Nano Lett. 2012, 12, 1329–1332.

124

Dick, K. A.; Kodambaka, S.; Reuter, M. C.; Deppert, K.; Samuelson, L.; Seifert, W.; Wallenberg, L. R.; Ross, F. M. The morphology of axial and branched nanowire heterostructures. Nano Lett. 2007, 7, 1817–1822.

125

Panciera, F.; Chou, Y. C.; Reuter, M. C.; Zakharov, D.; Stach, E. A.; Hofmann, S.; Ross, F. M. Synthesis of nanostructures in nanowires using sequential catalyst reactions. Nat. Mater. 2015, 14, 820–825.

126

Glas, F.; Harmand, J. C.; Patriarche, G. Why does wurtzite form in nanowires of Ⅲ-V zinc blende semiconductors? Phys. Rev. Lett. 2007, 99, 146101.

127

Lehmann, S.; Wallentin, J.; Jacobsson, D.; Deppert, K.; Dick, K. A. A general approach for sharp crystal phase switching in InAs, GaAs, InP, and GaP nanowires using only group V flow. Nano Lett. 2013, 13, 4099–4105.

128

Assali, S.; Gagliano, L.; Oliveira, D. S.; Verheijen, M. A.; Plissard, S. R.; Feiner, L. F.; Bakkers, E. P. A. M. Exploring crystal phase switching in GaP nanowires. Nano Lett. 2015, 15, 8062–8069.

129

Li, A.; Zou, J.; Han, X. D. Growth of Ⅲ-V semiconductor nanowires and their heterostructures. Sci. China-Mater. 2016, 59, 51–91.

130

Dubrovskii, V. G. Influence of the group V element on the chemical potential and crystal structure of Au-catalyzed Ⅲ-V nanowires. Appl. Phys. Lett. 2014, 104, 053110.

131

Jacobsson, D.; Panciera, F.; Tersoff, J.; Reuter, M. C.; Lehmann, S.; Hofmann, S.; Dick, K. A.; Ross, F. M. Interface dynamics and crystal phase switching in GaAs nanowires. Nature 2016, 531, 317–322.

132

Su, D. S.; Zhang, B. S.; Schlögl, R. Electron microscopy of solid catalysts-transforming from a challenge to a toolbox. Chem. Rev. 2015, 115, 2818–2882.

133

Akita, T.; Kohyama, M.; Haruta, M. Electron microscopy study of gold nanoparticles deposited on transition metal oxides. Acc. Chem. Res. 2013, 46, 1773–1782.

134

Friedrich, H.; de Jongh, P. E.; Verkleij, A. J.; de Jong, K. P. Electron tomography for heterogeneous catalysts and related nanostructured materials. Chem. Rev. 2009, 109, 1613–1629.

135

Liu, J. Advanced electron microscopy of metal-support interactions in supported metal catalysts. ChemCatChem 2011, 3, 934–948.

136

Datye, A. K. Electron microscopy of catalysts: Recent achievements and future prospects. J. Catal. 2003, 216, 144–154.

137

Gai, P. L. Developments of electron microscopy methods in the study of catalysts. Curr. Opin. Solid State Mater. Sci. 2001, 5, 371–380.

138

Zhou, W.; Wachs, I. E.; Kiely, C. J. Nanostructural and chemical characterization of supported metal oxide catalysts by aberration corrected analytical electron microscopy. Curr. Opin. Solid State Mater. Sci. 2012, 16, 10–22.

139

Ertl, G.; Knözinger, H.; Schüth, F.; Weitkamp, J. Handbook of Heterogeneous Catalysis; John Wiley and Sons, Inc. : Weinheim, 1997.

140

Baker, R. T. K.; Harris, P. S.; Thomas, R. B. Direct observation of particle mobility on a surface in a gaseous environment. Surf. Sci. 1974, 46, 311–316.

141

Baker, R. T. K.; Thomas, C.; Thomas, R. B. Continuous observation of the particle size behavior of platinum on alumina. J. Catal. 1975, 38, 510–513.

142

Gai, P. L.; Boyes, E. D. Environmental high resolution electron microscopy in materials science. In In-situ Microscopy in Materials Research: Leading International Research in Electron and Scanning Probe Microscopies; Gai, P. L., Ed.; Springer: New York, 1997; pp 123–147.

143

Liu, R. -J.; Crozier, P. A.; Smith, C. M.; Hucul, D. A.; Blackson, J.; Salaita, G. In situ electron microscopy studies of the sintering of palladium nanoparticles on alumina during catalyst regeneration processes. Microsc. Microanal. 2004, 10, 77–85.

144

Simonsen, S. B.; Chorkendorff, I.; Dahl, S.; Skoglundh, M.; Sehested, J.; Helveg, S. Direct observations of oxygen- induced platinum nanoparticle ripening studied by in situ TEM. J. Am. Chem. Soc. 2010, 132, 7968–7975.

145

Simonsen, S. B.; Chorkendorff, I.; Dahl, S.; Skoglundh, M.; Sehested, J.; Helveg, S. Ostwald ripening in a Pt/SiO2 model catalyst studied by in situ TEM. J. Catal. 2011, 281, 147–155.

146

Di Vece, M.; Bals, S.; Verbeeck, J.; Lievens, P.; Van Tendeloo, G. Compositional changes of Pd-Au bimetallic nanoclusters upon hydrogenation. Phys. Rev. B 2009, 80, 125420.

147

Wang, Z. L.; Shapiro, A. J. Energy-filtering and composition- sensitive imaging in surface and interface studies using HREM. Ultramicroscopy 1995, 60, 115–135.

148

Williams, E. D.; Marks, L. D. New and emerging techniques for imaging surfaces. Crit. Rev. Surf. Chem. 1995, 5, 275–303.

149

Yu, R.; Hu, L. H.; Cheng, Z. Y.; Li, Y. D.; Ye, H. Q.; Zhu, J. Direct subangstrom measurement of surfaces of oxide particles. Phys. Rev. Lett. 2010, 105, 226101.

150

Grozea, D.; Landree, E.; Collazo-Davila, C.; Bengu, E.; Plass, R.; Marks, L. D. Structural investigations of metal- semiconductor surfaces. Micron 1999, 30, 41–49.

151

Chang, T. Y.; Tanaka, Y.; Ishikawa, R.; Toyoura, K.; Matsunaga, K.; Ikuhara, Y.; Shibata, N. Direct imaging of Pt single atoms adsorbed on TiO2 (110) surfaces. Nano Lett. 2014, 14, 134–138.

152

Eng, P. J.; Trainor, T. P.; Brown, G. E., Jr.; Waychunas, G. A.; Newville, M.; Sutton, S. R.; Rivers, M. L. Structure of the hydrated α-Al2O3 (0001) surface. Science 2000, 288, 1029–1033.

153

Barth, C.; Reichling, M. Imaging the atomic arrangements on the high-temperature reconstructed α-Al2O3(0001) surface. Nature 2001, 414, 54–57.

154

Liu, P.; Kendelewicz, T.; Brown, G. E., Jr.; Nelson, E. J.; Chambers, S. A. Reaction of water vapor with α-Al2O3(0001) and α-Fe2O3(0001) surfaces: Synchrotron X-ray photoemission studies and thermodynamic calculations. Surf. Sci. 1998, 417, 53–65.

155

Tao, F.; Dag, S.; Wang, L. -W.; Liu, Z.; Butcher, D. R.; Bluhm, H.; Salmeron, M.; Somorjai, G. A. Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 2010, 327, 850–853.

156

Fujita, T.; Guan, P. F.; McKenna, K.; Lang, X. Y.; Hirata, A.; Zhang, L.; Tokunaga, T.; Arai, S.; Yamamoto, Y.; Tanaka, N. et al. Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 2012, 11, 775–780.

157

Yoshida, H.; Kuwauchi, Y.; Jinschek, J. R.; Sun, K. J.; Tanaka, S.; Kohyama, M.; Shimada, S.; Haruta, M.; Takeda, S. Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 2012, 335, 317–319.

158

Tanner, R. E.; Sasahara, A.; Liang, Y.; Altman, E. I.; Onishi, H. Formic acid adsorption on anatase TiO2(001)− (1×4) thin films studied by NC-AFM and STM. J. Phys. Chem. B 2002, 106, 8211–8222.

159

Wang, Y.; Sun, H. J.; Tan, S. J.; Feng, H.; Cheng, Z. W.; Zhao, J.; Zhao, A. D.; Wang, B.; Luo, Y.; Yang, J. L. et al. Role of point defects on the reactivity of reconstructed anatase titanium dioxide (001) surface. Nat. Commun. 2013, 4, 2214.

160

Li, H. B.; Yuan, W. T.; Jiang, Y.; Zhang, Z. F.; Zhang, Z.; Wang, Y. Observation of Pt-{100}-p(2×2)-O reconstruction by an environmental TEM. Prog. Nat. Sci. 2016, 26, 308–311.

161

Yuan, W. T.; Wang, Y.; Li, H. B.; Wu, H. L.; Zhang, Z.; Selloni, A.; Sun, C. H. Real-time observation of reconstruction dynamics on TiO2(001) surface under oxygen via an environmental transmission electron microscope. Nano Lett. 2016, 16, 132–137.

162

Yuan, W. T.; Jiang, Y.; Wang, Y.; Kattel, S.; Zhang, Z. F.; Chou, L. Y.; Tsung, C. K.; Wei, X.; Li, J. X.; Zhang, X. F. et al. In situ observation of facet-dependent oxidation of graphene on platinum in an environmental TEM. Chem. Commun. 2015, 51, 350–353.

163

Zhang, L. X.; Miller, B. K.; Crozier, P. A. Atomic level in situ observation of surface amorphization in anatase nanocrystals during light irradiation in water vapor. Nano Lett. 2013, 13, 679–684.

164

Newton, M. A.; Belver-Coldeira, C.; Martínez-Arias, A.; Fernández-García, M. Dynamic in situ observation of rapid size and shape change of supported Pd nanoparticles during CO/NO cycling. Nat. Mater. 2007, 6, 528–532.

165

Nolte, P.; Stierle, A.; Jin-Phillipp, N. Y.; Kasper, N.; Schulli, T. U.; Dosch, H. Shape changes of supported Rh nanoparticles during oxidation and reduction cycles. Science 2008, 321, 1654–1658.

166

Yoshida, H.; Matsuura, K.; Kuwauchi, Y.; Kohno, H.; Shimada, S.; Haruta, M.; Takeda, S. Temperature-dependent change in shape of platinum nanoparticles supported on CeO2 during catalytic reactions. Appl. Phys. Express 2011, 4, 065001.

167

Hansen, P. L.; Wagner, J. B.; Helveg, S.; Rostrup-Nielsen, J. R.; Clausen, B. S.; Topsøe, H. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 2002, 295, 2053–2055.

168

Uchiyama, T.; Yoshida, H.; Kuwauchi, Y.; Ichikawa, S.; Shimada, S.; Haruta, M.; Takeda, S. Systematic morphology changes of gold nanoparticles supported on CeO2 during CO oxidation. Angew. Chem., Int. Ed. 2011, 50, 10157– 10160.

169

Jiang, Y.; Li, H. B.; Wu, Z. M.; Ye, W. Y.; Zhang, H.; Wang, Y.; Sun, C. H.; Zhang, Z. In situ observation of hydrogen-induced surface faceting for palladium-copper nanocrystals at atmospheric pressure. Angew. Chem., Int. Ed. 2016, 55, 12427–12430.

170

Zhu, B. B.; Xu, Z.; Wang, C. L.; Gao, Y. Shape evolution of metal nanoparticles in water vapor environment. Nano Lett. 2016, 16, 2628–2632.

171

Zhang, S. Y.; Plessow, P. N.; Willis, J. J.; Dai, S.; Xu, M. J.; Graham, G. W.; Cargnello, M.; Abild-Pedersen, F.; Pan, X. Q. Dynamical observation and detailed description of catalysts under strong metal-support interaction. Nano Lett. 2016, 16, 4528–4534.

172

Tao, F.; Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Renzas, J. R.; Liu, Z.; Chung, J. Y.; Mun, B. S.; Salmeron, M.; Somorjai, G. A. Reaction-driven restructuring of Rh-Pd and Pt-Pd core–shell nanoparticles. Science 2008, 322, 932–934.

173

Gao, F.; Wang, Y. L.; Goodman, D. W. CO oxidation over AuPd(100) from ultrahigh vacuum to near-atmospheric pressures: The critical role of contiguous Pd atoms. J. Am. Chem. Soc. 2009, 131, 5734–5735.

174

Gao, F.; Wang, Y. L.; Goodman, D. W. CO oxidation over AuPd(100) from ultrahigh vacuum to near-atmospheric pressures: CO adsorption-induced surface segregation and reaction kinetics. J. Phys. Chem. C 2009, 113, 14993–15000.

175

Tao, F.; Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Aksoy, F.; Aloni, S.; Altoe, V.; Alayoglu, S.; Renzas, J. R.; Tsung, C. -K. et al. Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions. J. Am. Chem. Soc. 2010, 132, 8697–8703.

176

Wang, L. -L.; Tan, T. L.; Johnson, D. D. Configurational thermodynamics of alloyed nanoparticles with adsorbates. Nano Lett. 2014, 14, 7077–7084.

177

Xin, H. L.; Alayoglu, S.; Tao, R. Z.; Genc, A.; Wang, C. -M.; Kovarik, L.; Stach, E. A.; Wang, L. -W.; Salmeron, M.; Somorjai, G. A. et al. Revealing the atomic restructuring of Pt-Co nanoparticles. Nano Lett. 2014, 14, 3203–3207.

178

Wu, Y. A.; Li, L.; Li, Z.; Kinaci, A.; Chan, M. K. Y.; Sun, Y. G.; Guest, J. R.; McNulty, I.; Rajh, T.; Liu, Y. Z. Visualizing redox dynamics of a single Ag/AgCl heterogeneous nanocatalyst at atomic resolution. ACS Nano 2016, 10, 3738–3746.

179

Inukai, J.; Tryk, D. A.; Abe, T.; Wakisaka, M.; Uchida, H.; Watanabe, M. Direct STM elucidation of the effects of atomic-level structure on Pt(111) electrodes for dissolved CO oxidation. J. Am. Chem. Soc. 2013, 135, 1476–1490.

180

Narayanan, R.; El-Sayed, M. A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 2004, 4, 1343–1348.

181

Bratlie, K. M.; Lee, H.; Komvopoulos, K.; Yang, P. D.; Somorjai, G. A. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 2007, 7, 3097–3101.

182

Johnson, W. H. On some remarkable changes produced in iron and steel by the action of hydrogen and acids. Proc. Roy. Soc. Lond. 1874, 23, 168–179.

183

Tabata, T.; Birnbaum, H. K. Direct observations of hydrogen enhanced crack propagation in iron. Scripta Metall. 1984, 18, 231–236.

184

Tabata, T.; Birnbaum, H. K. Direct observations of the effect of hydrogen on the behavior of dislocations in iron. Scripta Metall. 1983, 17, 947–950.

185

Robertson, I. M.; Birnbaum, H. K. An HVEM study of hydrogen effects on the deformation and fracture of nickel. Acta Metall. 1986, 34, 353–366.

186

Bond, G. M.; Robertson, I. M.; Birnbaum, H. K. Effects of hydrogen on deformation and fracture processes in high- ourity aluminium. Acta Metall. 1988, 36, 2193–2197.

187

Rozenak, P.; Robertson, I. M.; Birnbaum, H. K. HVEM studies of the effects of hydrogen on the deformation and fracture of AISI type 316 austenitic stainless steel. Acta Metall. Mater. 1990, 38, 2031–2040.

188

Hänninen, H. E.; Lee, T. C.; Robertson, I. M.; Birnbaum, H. K. In situ observations on effects of hydrogen on deformation and fracture of A533B pressure vessel steel. J. Mater. Eng. Perform. 1993, 2, 807–817.

189

Zheng, S. J.; Wang, Y. J.; Zhang, B.; Zhu, Y. L.; Liu, C.; Hu, P.; Ma, X. L. Identification of MnCr2O4 nano-octahedron in catalysing pitting corrosion of austenitic stainless steels. Acta Mater. 2010, 58, 5070–5085.

190

Zhang, B.; Wang, J.; Wu, B.; Zhou, Y. T.; Ma, X. L. Quasi-in-situ ex-polarized TEM observation on dissolution of MnS inclusions and metastable pitting of austenitic stainless steel. Corros. Sci. 2015, 100, 295–305.

191

Malladi, S. R. K.; Tichelaar, F. D.; Xu, Q.; Wu, M. Y.; Terryn, H.; Mol, J. M. C.; Hannour, F.; Zandbergen, H. W. Quasi in situ analytical TEM to investigate electrochemically induced microstructural changes in alloys: AA2024-T3 as an example. Corros. Sci. 2013, 69, 221–225.

192

Chenna, S.; Crozier, P. A. Operando transmission electron microscopy: A technique for detection of catalysis using electron energy-loss spectroscopy in the transmission electron microscope. ACS Catal. 2012, 2, 2395–2402.

193

Zewail, A. H. Four-dimensional electron microscopy. Science 2010, 328, 187–193.

194

Flannigan, D. J.; Zewail, A. H. 4D electron microscopy: Principles and applications. Acc. Chem. Res. 2012, 45, 1828–1839.

195

Xie, D. G.; Li, S. Z.; Li, M.; Wang, Z. J.; Gumbsch, P.; Sun, J.; Ma, E.; Li, J.; Shan, Z. W. Hydrogenated vacancies lock dislocations in aluminium. Nat. Commun. 2016, 7, 13341.

Nano Research
Pages 42-67
Cite this article:
Jiang Y, Zhang Z, Yuan W, et al. Recent advances in gas-involved in situ studies via transmission electron microscopy. Nano Research, 2018, 11(1): 42-67. https://doi.org/10.1007/s12274-017-1645-9

767

Views

52

Crossref

N/A

Web of Science

50

Scopus

6

CSCD

Altmetrics

Received: 23 January 2017
Revised: 02 April 2017
Accepted: 24 April 2017
Published: 01 July 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return