AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Artificial interphase engineering of electrode materials to improve the overall performance of lithium-ion batteries

Zhiqiang ZhuXiaodong Chen( )
Innovative Centre for Flexible Devices (iFLEX)School of Materials Science and EngineeringNanyang Technological University, 50 Nanyang Avenue639798Singapore, Singapore
Show Author Information

Graphical Abstract

Abstract

The overall performance of lithium-ion batteries (LIBs) is closely related to the interphase between the electrode materials and electrolytes. During LIB operation, electrolytes may decompose on the surface of electrode materials, forming a solid electrolyte interphase (SEI) layer. Ideally, the SEI layer should ensure reversible lithium-ion intercalation in the electrodes and suppress interfacial interactions. However, the chemical and mechanical stabilities of the SEI layer are not usually able to meet these requirements. Alternatively, tremendous efforts have been devoted to engineering the surface of electrode materials with an artificial interphase, which shows great promise in improving the electrochemical performance. Herein, we present a comprehensive summary of the state-of-the-art knowledge on this topic. The effects of the artificial interphase on the electrochemical performance of the electrode materials are discussed in detail. In particular, we highlight the importance of three functions of artificial interphases, including inhibiting electrolyte decomposition, protecting the electrodes from corrosion, and accommodating electrode volume changes.

References

1

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2014, 7, 19-29.

2

Armstrong, M. J.; O'Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res. 2014, 7, 1-62.

3

Tang, Y. X.; Zhang, Y. Y.; Li, W. L.; Ma, B.; Chen, X. D. Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 2015, 44, 5926-5940.

4

Balogun, M. S.; Qiu, W. T.; Luo, Y.; Meng, H.; Mai, W. J.; Onasanya, A.; Olaniyi, T. K.; Tong, Y. X. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Res. 2016, 9, 2823-2851.

5

Zhu, Z. Q.; Hong, M. L.; Guo, D. S.; Shi, J. F.; Tao, Z. L.; Chen, J. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. J. Am. Chem. Soc. 2014, 136, 16461-16464.

6

Lu, T.; Dong, S. M.; Zhang, C. J.; Zhang, L. X.; Cui, G. L. Fabrication of transition metal selenides and their applications in energy storage. Coord. Chem. Rev. 2017, 332, 75-99.

7

Imada, Y.; Kukita, T.; Nakano, H.; Yamamoto, Y. Easy access to martin's hypervalent sulfur anions toward an electrode material for organic rechargeable batteries. Bull. Chem. Soc. Jpn. 2016, 89, 546-548.

8

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167-1176.

9

Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828-11862.

10

Zhang, Y. Y.; Tang, Y. X.; Li, W. L.; Chen, X. D. Nanostructured TiO2-based anode materials for high-performance rechargeable lithium-ion batteries. ChemNanoMat 2016, 2, 764-775.

11

Ji, B. F.; Zhang, F.; Sheng, M. H.; Tong, X. F.; Tang, Y. B. A novel and generalized lithium-ion-battery configuration utilizing al foil as both anode and current collector for enhanced energy density. Adv. Mater. 2017, 29, 1604219.

12

Tan, S.; Ji, Y. J.; Zhang, Z. R.; Yang, Y. Recent progress in research on high-voltage electrolytes for lithium-ion batteries. ChemPhysChem 2014, 15, 1956-1969.

13

Wang, K. X.; Li, X. H.; Chen, J. S. Surface and interface engineering of electrode materials for lithium-ion batteries. Adv. Mater. 2015, 27, 527-545.

14

Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 114, 11503-11618.

15

Gauthier, M.; Carney, T. J.; Grimaud, A.; Giordano, L.; Pour, N.; Chang, H. H.; Fenning, D. P.; Lux, S. F.; Paschos, O.; Bauer, C. et al. Electrode-electrolyte interface in Li-ion batteries: Current understanding and new insights. J. Phys. Chem. Lett. 2015, 6, 4653-4672.

16

Zhu, Z. Q.; Wang, S. W.; Du, J.; Jin, Q.; Zhang, T. R.; Cheng, F. Y.; Chen, J. Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Lett. 2014, 14, 153-157.

17

Li, W. Y.; Tang, Y. B.; Kang, W. P.; Zhang, Z. Y.; Yang, X.; Zhu, Y.; Zhang, W. J.; Lee, C. S. Core-shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes. Small 2015, 11, 1345-1351.

18

Chang, X. H.; Wang, T.; Liu, Z. L.; Zheng, X. Y.; Zheng, J.; Li, X. G. Ultrafine sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries. Nano Res. , 2017, 10, 1950-1958.

19

Ding, S. J.; Chen, J. S.; Qi, G. G.; Duan, X. N.; Wang, Z. Y.; Giannelis, E. P.; Archer, L. A.; Lou, X. W. Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors. J. Am. Chem. Soc. 2011, 133, 21-23.

20

Tang, Y. X.; Zhang, Y. Y.; Deng, J. Y.; Qi, D. P.; Leow, W. R.; Wei, J. Q.; Yin, S. Y.; Dong, Z. L.; Yazami, R.; Chen, Z. et al. Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries. Angew. Chem., Int. Ed. 2014, 53, 13488-13492.

21

Tang, Y. X.; Zhang, Y. Y.; Deng, J. Y.; Wei, J. Q.; Le Tam, H.; Chandran, B. K.; Dong, Z. L.; Chen, Z.; Chen, X. D. Mechanical force-driven growth of elongated bending TiO2-based nanotubular materials for ultrafast rechargeable lithium ion batteries. Adv. Mater. 2014, 26, 6111-6118.

22

An, Q. Y.; Zhang, P. F.; Xiong, F. Y.; Wei, Q. L.; Sheng, J. Z.; Wang, Q. Q.; Mai, L. Q. Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries. Nano Res. 2015, 8, 481-490.

23

Jiang, Y.; Tian, R. Y.; Liu, H. Q.; Chen, J. K.; Tan, X. H.; Zhang, L.; Liu, G. Y.; Wang, H. F.; Sun, L. F.; Chu, W. G. Synthesis and characterization of oriented linked LiFePO4 nanoparticles with fast electron and ion transport for high-power lithium-ion batteries. Nano Res. 2015, 8, 3803-3814.

24

Tang, Y. X.; Zhang, Y. Y.; Rui, X. H.; Qi, D. P.; Luo, Y. F.; Leow, W. R.; Chen, S.; Guo, J.; Wei, J. Q.; Li, W. Q. et al. Conductive inks based on a lithium titanate nanotube gel for high-rate lithium-ion batteries with customized configuration. Adv. Mater. 2016, 28, 1567-1576.

25

Zhang, W.; Zhao, Y. Y.; Malgras, V.; Ji, Q. M.; Jiang, D. M.; Qi, R. J.; Ariga, K.; Yamauchi, Y.; Liu, J.; Jiang, J. S. et al. Synthesis of monocrystalline nanoframes of prussian blue analogues by controlled preferential etching. Angew. Chem., Int. Ed. 2016, 55, 8228-8234.

26

Sakaushi, K.; Antonietti, M. Carbon- and nitrogen-based porous solids: A recently emerging class of materials. Bull. Chem. Soc. Jpn. 2015, 88, 386-398.

27

Fu, L. J.; Liu, H.; Li, C.; Wu, Y. P.; Rahm, E.; Holze, R.; Wu, H. Q. Surface modifications of electrode materials for lithium ion batteries. Solid State Sci. 2006, 8, 113-128.

28

Mauger, A.; Julien, C. Surface modifications of electrode materials for lithium-ion batteries: Status and trends. Ionics 2014, 20, 751-787.

29

Wang, X. R.; Yushin, G. Chemical vapor deposition and atomic layer deposition for advanced lithium ion batteries and supercapacitors. Energy Environ. Sci. 2015, 8, 1889-1904.

30

Share, K.; Westover, A.; Li, M. Y.; Pint, C. L. Surface engineering of nanomaterials for improved energy storage—A review. Chem. Eng. Sci. 2016, 154, 3-19.

31

Takamura, T.; Sumiya, K.; Suzuki, J.; Yamada, C.; Sekine, K. Enhancement of Li doping/undoping reaction rate of carbonaceous materials by coating with an evaporated metal film. J. Power Sources 1999, 81-82, 368-372.

32

Wu, Y. P.; Jiang, C. Y.; Wan, C. R.; Tsuchida, E. Composite anode material for lithium ion battery with low sensitivity to water. Electrochem. Commun. 2000, 2, 626-629.

33

Veeraraghavan, B.; Durairajan, A.; Haran, B.; Popov, B.; Guidotti, R. Study of Sn-coated graphite as anode material for secondary lithium-ion batteries. J. Electrochem. Soc. 2002, 149, A675-A681.

34

Zhang, S. S.; Xu, K.; Jow, T. R. Effect of Li2CO3-coating on the performance of natural graphite in Li-ion battery. Electrochem. Commun. 2003, 5, 979-982.

35

Cavanagh, A. S.; Lee, Y.; Yoon, B.; George, S. Atomic layer deposition of LiOH and Li2CO3 using lithium t-butoxide as the lithium source. ECS Trans. 2010, 33, 223-229.

36

Xiao, Y.; Wang, G. X.; Zhou, S.; Sun, Y. H.; Zhao, Q.; Gong, Y. C.; Lu, T. C.; Luo, C. H.; Yan, K. P. Enhanced electrochemical performance and decreased strain of graphite anode by Li2SiO3 and Li2CO3 co-modifying. Electrochim. Acta 2017, 223, 8-20.

37

Kottegoda, I. R. M.; Kadoma, Y.; Ikuta, H.; Uchimoto, Y.; Wakihara, M. Enhancement of rate capability in graphite anode by surface modification with zirconia. Electrochem. Solid-State Lett. 2002, 5, A275-A278.

38

Lux, S. F.; Placke, T.; Engelhardt, C.; Nowak, S.; Bieker, P.; Wirth, K. E.; Passerini, S.; Winter, M.; Meyer, H. W. Enhanced electrochemical performance of graphite anodes for lithium-ion batteries by dry coating with hydrophobic fumed silica. J. Electrochem. Soc. 2012, 159, A1849-A1855.

39

Shu, J.; Ma, R.; Shui, M.; Wang, D. J.; Long, N. B.; Ren, Y. L.; Zhang, R. F.; Yao, J. H.; Mao, X. B.; Zheng, W. D. et al. Facile controlled growth of silica on carbon spheres and their superior electrochemical properties. RSC Adv. 2012, 2, 5806-5814.

40

Li, J. C.; Dudney, N. J.; Nanda, J.; Liang, C. D. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. ACS Appl. Mater. Interfaces 2014, 6, 10083-10088.

41

Al-Obeidi, A.; Kramer, D.; Boles, S. T.; Mönig, R.; Thompson, C. V. Mechanical measurements on lithium phosphorous oxynitride coated silicon thin film electrodes for lithium-ion batteries during lithiation and delithiation. Appl. Phys. Lett. 2016, 109, 071902.

42

Lin, C. F.; Noked, M.; Kozen, A. C.; Liu, C. Y.; Zhao, O.; Gregorczyk, K.; Hu, L. B.; Lee, S. B.; Rubloff, G. W. Solid electrolyte lithium phosphous oxynitride as a protective nanocladding layer for 3D high-capacity conversion electrodes. ACS Nano 2016, 10, 2693-2701.

43

Lin, J.; Guo, J. L.; Liu, C.; Guo, H. Artificial solid electrolyte interphase with in-situ formed porosity for enhancing lithiation of silicon wafer. J. Power Sources 2016, 336, 401-407.

44

Cho, J.; Kim, Y. W.; Kim, B.; Lee, J. G.; Park, B. A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles. Angew. Chem., Int. Ed. 2003, 42, 1618-1621.

45

Sun, Y. K.; Yoon, C. S.; Myung, S. T.; Belharouak, I.; Amine, K. Role of AlF3 coating on LiCoO2 particles during cycling to cutoff voltage above 4.5 V. J. Electrochem. Soc. 2009, 156, A1005-A1010.

46

Park, K.; Park, J. H.; Hong, S. G.; Yoon, J.; Park, S.; Kim, J. H.; Yoon, D.; Kim, H.; Son, Y. H.; Park, J. H. et al. Induced AlF3 segregation for the generation of reciprocal Al2O3 and LiF coating layer on self-generated LiMn2O4 surface of over-lithiated oxide based Li-ion battery. Electrochim. Acta 2016, 222, 830-837.

47

Tsumura, T.; Katanosaka, A.; Souma, I.; Ono, T.; Aihara, Y.; Kuratomi, J.; Inagaki, M. Surface modification of natural graphite particles for lithium ion batteries. Solid State Ionics 2000, 135, 209-212.

48

Cao, Y. L.; Xiao, L. F.; Ai, X. P.; Yang, H. X. Surface-modified graphite as an improved intercalating anode for lithium-ion batteries. Electrochem. Solid-State Lett. 2003, 6, A30-A33.

49

Kim, S. S.; Kadoma, Y.; Ikuta, H.; Uchimoto, Y.; Wakihara, M. Electrochemical performance of natural graphite by surface modification using aluminum. Electrochem. Solid-State Lett. 2001, 4, A109-A112.

50

Guo, K. K.; Pan, Q. M.; Fang, S. B. Poly(acrylonitrile) encapsulated graphite as anode materials for lithium ion batteries. J. Power Sources 2002, 111, 350-356.

51

Shi, Q.; Liu, W. J.; Qu, Q. T.; Gao, T.; Wang, Y.; Liu, G.; Battaglia, V. S.; Zheng, H. H. Robust solid/electrolyte interphase on graphite anode to suppress lithium inventory loss in lithium-ion batteries. Carbon 2017, 111, 291-298.

52

Flandrois, S.; Simon, B. Carbon materials for lithium-ion rechargeable batteries. Carbon 1999, 37, 165-180.

53

Zhao, D. D.; Wang, L.; Yu, P.; Zhao, L.; Tian, C. G.; Zhou, W.; Zhang, L.; Fu, H. G. From graphite to porous graphene-like nanosheets for high rate lithium-ion batteries. Nano Res. 2015, 8, 2998-3010.

54

Nobili, F.; Dsoke, S.; Mancini, M.; Tossici, R.; Marassi, R. Electrochemical investigation of polarization phenomena and intercalation kinetics of oxidized graphite electrodes coated with evaporated metal layers. J. Power Sources 2008, 180, 845-851.

55

Mancini, M.; Nobili, F.; Dsoke, S.; D'Amico, F.; Tossici, R.; Croce, F.; Marassi, R. Lithium intercalation and interfacial kinetics of composite anodes formed by oxidized graphite and copper. J. Power Sources 2009, 190, 141-148.

56

Nobili, F.; Dsoke, S.; Mancini, M.; Marassi, R. Interfacial properties of copper-coated graphite electrodes: Coating thickness dependence. Fuel Cells 2009, 9, 264-268.

57

Ho, J.; Xu, K. Tailoring a desired interphase on graphitic anode. ECS Trans. 2012, 41, 159-166.

58

Komaba, S.; Watanabe, M.; Groult, H.; Kumagai, N.; Okahara, K. Impact of sodium salt coating on a graphite negative electrode for lithium-ion batteries. Electrochem. Solid-State Lett. 2006, 9, A130-A133.

59

Komaba, S.; Watanabe, M.; Groult, H.; Kumagai, N. Alkali carbonate-coated graphite electrode for lithium-ion batteries. Carbon 2008, 46, 1184-1193.

60

Komaba, S.; Watanabe, M.; Groult, H. Alkali chloride coating for graphite electrode of lithium-ion batteries. J. Electrochem. Soc. 2010, 157, A1375-A1382.

61

Lee, S. E.; Kim, E.; Cho, J. Improvement of electrochemical properties of natural graphite anode materials with an ovoid morphology by AlPO4 coating. Electrochem. Solid-State Lett. 2007, 10, A1-A4.

62

Ding, F.; Xu, W.; Choi, D.; Wang, W.; Li, X. L.; Engelhard, M. H.; Chen, X. L.; Yang, Z. G.; Zhang, J. G. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries. J. Mater. Chem. 2012, 22, 12745-12751.

63

Snyder, M. Q.; Trebukhova, S. A.; Ravdel, B.; Wheeler, M. C.; DiCarlo, J.; Tripp, C. P.; DeSisto, W. J. Synthesis and characterization of atomic layer deposited titanium nitride thin films on lithium titanate spinel powder as a lithium-ion battery anode. J. Power Sources 2007, 165, 379-385.

64

Jung, Y. S.; Cavanagh, A. S.; Riley, L. A.; Kang, S. H.; Dillon, A. C.; Groner, M. D.; George, S. M.; Lee, S. H. Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries. Adv. Mater. 2010, 22, 2172-2176.

65

Wang, H. Y.; Wang, F. M. Electrochemical investigation of an artificial solid electrolyte interface for improving the cycle-ability of lithium ion batteries using an atomic layer deposition on a graphite electrode. J. Power Sources 2013, 233, 1-5.

66

Seok Jung, Y.; Cavanagh, A. S.; Yan, Y. F.; George, S. M.; Manthiram, A. Effects of atomic layer deposition of Al2O3 on the Li[Li0.20Mn0.54Ni0.13Co0.13]O2 cathode for lithium-ion batteries. J. Electrochem. Soc. 2011, 158, A1298-A1302.

67

Cheng, H. M.; Wang, F. M.; Chu, J. P.; Santhanam, R.; Rick, J.; Lo, S. C. Enhanced cycleabity in lithium ion batteries: Resulting from atomic layer depostion of Al2O3 or TiO2 on LiCoO2 electrodes. J. Phys. Chem. C 2012, 116, 7629-7637.

68

Pan, Q. M.; Wang, H. B.; Jiang, Y. H. Covalent modification of natural graphite with lithium benzoate multilayers via diazonium chemistry and their application in lithium ion batteries. Electrochem. Commun. 2007, 9, 754-760.

69

Pan, Q. M.; Wang, H. B.; Jiang, Y. H. Natural graphite modified with nitrophenyl multilayers as anode materials for lithium ion batteries. J. Mater. Chem. 2007, 17, 329-334.

70

Verma, P.; Novák, P. Formation of artificial solid electrolyte interphase by grafting for improving Li-ion intercalation and preventing exfoliation of graphite. Carbon 2012, 50, 2599-2614.

71

Li, F. S.; Wu, Y. S.; Chou, J.; Winter, M.; Wu, N. L. A mechanically robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery anodes. Adv. Mater. 2015, 27, 130-137.

72

Guk, H.; Kim, D.; Choi, S. H.; Chung, D. H.; Han, S. S. Thermostable artificial solid-electrolyte interface layer covalently linked to graphite for lithium ion battery: Molecular dynamics simulations. J. Electrochem. Soc. 2016, 163, A917-A922.

73

Drofenik, J.; Gaberšček, M.; Dominko, R.; Bele, M.; Pejovnik, S. Carbon anodes prepared from graphite particles pretreated in a gelatine solution. J. Power Sources 2001, 94, 97-101.

74

Gaberšček, M.; Bele, M.; Drofenik, J.; Dominko, R.; Pejovnik, S. Improved carbon anode properties: Pretreatment of particles in polyelectrolyte solution. J. Power Sources 2001, 97-98, 67-69.

75

Veeraraghavan, B.; Paul, J.; Haran, B.; Popov, B. Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries. J. Power Sources 2002, 109, 377-387.

76

Wang, M. K.; Zhao, F.; Guo, Z. H.; Wang, Y. L.; Dong, S. J. Polyaniline-coated carbon particles and their electrode behavior in organic carbonate electrolyte. J. Electroanal. Chem. 2004, 570, 201-208.

77

Menkin, S.; Golodnitsky, D.; Peled, E. Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium-ion cells for EV applications. Electrochem. Commun. 2009, 11, 1789-1791.

78

Komaba, S.; Yabuuchi, N.; Ozeki, T.; Okushi, K.; Yui, H.; Konno, K.; Katayama, Y.; Miura, T. Functional binders for reversible lithium intercalation into graphite in propylene carbonate and ionic liquid media. J. Power Sources 2010, 195, 6069-6074.

79

Ku, J. H.; Hwang, S. S.; Ham, D. J.; Song, M. S.; Shon, J. K.; Ji, S. M.; Choi, J. M.; Doo, S. G. Poly(isobutylene-alt-maleic anhydride) binders containing lithium for high-performance Li-ion batteries. J. Power Sources 2015, 287, 36-42.

80

Bele, M.; Gaberscek, M.; Dominko, R.; Drofenik, J.; Zupan, K.; Komac, P.; Kocevar, K.; Musevic, I.; Pejovnik, S. Gelatin-pretreated carbon particles for potential use in lithium ion batteries. Carbon 2002, 40, 1117-1122.

81

Ui, K.; Kikuchi, S.; Mikami, F.; Kadoma, Y.; Kumagai, N. Improvement of electrochemical characteristics of natural graphite negative electrode coated with polyacrylic acid in pure propylene carbonate electrolyte. J. Power Sources 2007, 173, 518-521.

82

Komaba, S.; Okushi, K.; Ozeki, T.; Yui, H.; Katayama, Y.; Miura, T.; Saito, T.; Groult, H. Polyacrylate modifier for graphite anode of lithium-ion batteries. Electrochem. Solid-State Lett. 2009, 12, A107-A110.

83

Komaba, S.; Ozeki, T.; Okushi, K. Functional interface of polymer modified graphite anode. J. Power Sources 2009, 189, 197-203.

84

Lou, X. W.; Wang, Y.; Yuan, C.; Lee, J. Y.; Archer, L. A. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 2006, 18, 2325-2329.

85

Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364-5457.

86

Obrovac, M. N.; Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 2014, 114, 11444-11502.

87

Li, L.; Kovalchuk, A.; Tour, J. M. SnO2-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability. Nano Res. 2014, 7, 1319-1326.

88

Zhang, Y. Y.; Rui, X. H.; Tang, Y. X.; Liu, Y. Q.; Wei, J. Q.; Chen, S.; Leow, W. R.; Li, W. L.; Liu, Y. J.; Deng, J. Y. et al. Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1502409.

89

Jiao, J. Q.; Qiu, W. D.; Tang, J. G.; Chen, L. P.; Jing, L. Y. Synthesis of well-defined Fe3O4 nanorods/N-doped graphene for lithium-ion batteries. Nano Res. 2016, 9, 1256-1266.

90

Chou, S. L.; Wang, J. Z.; Choucair, M.; Liu, H. K.; Stride, J. A.; Dou, S. X. Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun. 2010, 12, 303-306.

91

Xu, K. Q.; Ben, L. B.; Li, H.; Huang, X. J. Silicon-based nanosheets synthesized by a topochemical reaction for use as anodes for lithium ion batteries. Nano Res. 2015, 8, 2654-2662.

92

Xu, C. X.; Hao, Q.; Zhao, D. Y. Facile fabrication of a nanoporous Si/Cu composite and its application as a high-performance anode in lithium-ion batteries. Nano Res. 2016, 9, 908-916.

93

Lian, C.; Xiao, X. L.; Chen, Z.; Liu, Y. X.; Zhao, E. Y.; Wang, D. S.; Chen, C. Preparation of hexagonal ultrathin WO3 nano-ribbons and their electrochemical performance as an anode material in lithium ion batteries. Nano Res. 2016, 9, 435-441.

94

Agyeman, D. A.; Song, K.; Lee, G. H.; Park, M.; Kang, Y. M. Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion battery. Adv. Energy Mater. 2016, 6, 1600904.

95

Yu, Y.; Gu, L.; Zhu, C. B.; Tsukimoto, S.; van Aken, P. A.; Maier, J. Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. Adv. Mater. 2010, 22, 2247-2250.

96

Murugesan, S.; Harris, J. T.; Korgel, B. A.; Stevenson, K. J. Copper-coated amorphous silicon particles as an anode material for lithium-ion batteries. Chem. Mater. 2012, 24, 1306-1315.

97

Yang, Y. X.; Liu, Y. F.; Pu, K. C.; Chen, X.; Tian, H.; Gao, M. X.; Zhu, M.; Pan, H. G. Highly stable cycling of amorphous Li2CO3-coated α-Fe2O3 nanocrystallines prepared via a new mechanochemical strategy for Li-ion batteries. Adv. Funct. Mater. 2017, 27, 1605011.

98

Kim, B. E.; Park, S. E.; Lim, J. C.; Lee, J. K. Physical and electrochemical properties of porous TiO2 coated silicon prepared with different amounts of basic catalyst of NH4OH. Phys. Scr. 2010, T139, 014021.

99

Park, S. E.; Lee, S. W.; Yang, D.; Lee, J. K. Encapsulated Fe3O4 nanoparticles with silica thin layer as an anode material for lithium secondary batteries. Phys. Scr. 2010, T139, 014027.

100

Riley, L. A.; Cavanagh, A. S.; George, S. M.; Jung, Y. S.; Yan, Y. F.; Lee, S. H.; Dillon, A. C. Conformal surface coatings to enable high volume expansion Li-ion anode materials. ChemPhysChem 2010, 11, 2124-2230.

101

Lee, J. H.; Hon, M. H.; Chung, Y. W.; Leu, I. C. The effect of TiO2 coating on the electrochemical performance of ZnO nanorod as the anode material for lithium-ion battery. Appl. Phys. A 2011, 102, 545-550.

102

Dillon, A. C.; Riley, L. A.; Jung, Y. S.; Ban, C.; Molina, D.; Mahan, A. H.; Cavanagh, A. S.; George, S. M.; Lee, S. H. HWCVD MoO3 nanoparticles and a-Si for next generation Li-ion anodes. Thin Solid Films 2011, 519, 4495-4497.

103

He, Y.; Yu, X. Q.; Wang, Y. H.; Li, H.; Huang, X. J. Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency. Adv. Mater. 2011, 23, 4938-4941.

104

Li, Y.; Sun, Y. J.; Xu, G. J.; Lu, Y.; Zhang, S.; Xue, L. G.; Jur, J. S.; Zhang, X. W. Tuning electrochemical performance of Si-based anodes for lithium-ion batteries by employing atomic layer deposition alumina coating. J. Mater. Chem. A 2014, 2, 11417-11425.

105

Wang, D. N.; Yang, J. L.; Liu, J.; Li, X. F.; Li, R. Y.; Cai, M.; Sham, T. K.; Sun, X. L. Atomic layer deposited coatings to significantly stabilize anodes for Li ion batteries: Effects of coating thickness and the size of anode particles. J. Mater. Chem. A 2014, 2, 2306-2312.

106

Yu, M. P.; Wang, A. J.; Wang, Y. S.; Li, C.; Shi, G. Q. An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition. Nanoscale 2014, 6, 11419-11424.

107

Palaparty, S. A.; Patel, R. L.; Liang, X. H. Enhanced cycle life and capacity retention of iron oxide ultrathin film coated SnO2 nanoparticles at high current densities. RSC Adv. 2016, 6, 24340-24348.

108

Kim, S. Y.; Ostadhossein, A.; van Duin, A. C. T.; Xiao, X. C.; Gao, H. J.; Qi, Y. Self-generated concentration and modulus gradient coating design to protect Si nano-wire electrodes during lithiation. Phys. Chem. Chem. Phys. 2016, 18, 3706-3715.

109

Liu, Y. Y.; Zai, J. T.; Li, X. M.; Ma, Z. F.; Qian, X. F. Al2O3 coated metal sulfides: One-pot synthesis and enhanced lithium storage stability via localized in situ conversion reactions. Dalton Trans. 2017, 46, 1260-1265.

110

Ng, S. H.; Wang, J. Z.; Wexler, D.; Chew, S. Y.; Liu, H. K. Amorphous carbon-coated silicon nanocomposites: A low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries. J. Phys. Chem. C 2007, 111, 11131-11138.

111

Ji, J. Y.; Ji, H. X.; Zhang, L. L.; Zhao, X.; Bai, X.; Fan, X. B.; Zhang, F. B.; Ruoff, R. S. Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries. Adv. Mater. 2013, 25, 4673-4677.

112

Li, L.; Raji, A. R. O.; Tour, J. M. Graphene-wrapped MnO2-graphene nanoribbons as anode materials for high-performance lithium ion batteries. Adv. Mater. 2013, 25, 6298-302.

113

Yang, S. N.; Pan, Q. M.; Liu, J. Improving the cycleability of Si anodes by covalently grafting with 4-carboxyphenyl groups. Electrochem. Commun. 2010, 12, 479-482.

114

Komaba, S.; Shimomura, K.; Yabuuchi, N.; Ozeki, T.; Yui, H.; Konno, K. Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries. J. Phys. Chem. C 2011, 115, 13487-13495.

115

Min, J. H.; Bae, Y. S.; Kim, J. Y.; Kim, S. S.; Song, S. W. Self-organized artificial SEI for improving the cycling ability of silicon-based battery anode materials. Bull. Korean Chem. Soc. 2013, 34, 1296-1299.

116

Li, F. S.; Wu, Y. S.; Chou, J.; Wu, N. L. A dimensionally stable and fast-discharging graphite-silicon composite Li-ion battery anode enabled by electrostatically self-assembled multifunctional polymer-blend coating. Chem. Commun. 2015, 51, 8429-8431.

117

Abdelhamid, M. E.; Snook, G. A.; Gaubicher, J.; Lestriez, B.; Moreau, P.; Guyomard, D.; O'Mullane, A. P. Fabrication and performance of electrochemically grafted thiophene silicon nanoparticle anodes for Li-ion batteries. J. Power Sources 2016, 324, 97-105.

118

Dalla Corte, D. A.; Gouget-Laemmel, A. C.; Lahlil, K.; Caillon, G.; Jordy, C.; Chazalviel, J. N.; Gacoin, T.; Rosso, M.; Ozanam, F. Molecular grafting on silicon anodes: Artificial solid-electrolyte interphase and surface stabilization. Electrochim. Acta 2016, 201, 70-77.

119

Liu, G.; Xun, S. D.; Vukmirovic, N.; Song, X. Y.; Olalde-Velasco, P.; Zheng, H. H.; Battaglia, V. S.; Wang, L. W.; Yang, W. L. Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv. Mater. 2011, 23, 4679-4683.

120

Dou, P.; Cao, Z. Z.; Zheng, J.; Wang, C.; Xu, X. H. Solid polymer electrolyte coating three-dimensional Sn/Ni bimetallic nanotube arrays for high performance lithium-ion battery anodes. J. Alloys Compd. 2016, 685, 690-698.

121

Bridel, J. S.; Azaïs, T.; Morcrette, M.; Tarascon, J. M.; Larcher, D. Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries. Chem. Mater. 2010, 22, 1229-1241.

122

Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G. Toward efficient binders for Li-ion battery Si-based anodes: Polyacrylic acid. ACS Appl. Mater. Interfaces 2010, 2, 3004-3010.

123

Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 2011, 334, 75-79.

124

Wang, Y. X.; Xu, Y. F.; Meng, Q. S.; Chou, S. L.; Ma, J.; Kang, Y. M.; Liu, H. K. Chemically bonded Sn nanoparticles using the crosslinked epoxy binder for high energy-density Li ion battery. Adv. Mater. Interfaces 2016, 3, 1600662.

125

Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042-1048.

126

Wu, H.; Yu, G. H.; Pan, L. J.; Liu, N.; McDowell, M. T.; Bao, Z.; Cui, Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013, 4, 1943.

127

Jin, Y.; Li, S.; Kushima, A.; Zheng, X. Q.; Sun, Y. M.; Xie, J.; Sun, J.; Xue, W. J.; Zhou, G. M.; Wu, J. et al. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy Environ. Sci. 2017, 10, 580-592.

128

Yoshio, M.; Wang, H. Y.; Fukuda, K.; Umeno, T.; Dimov, N.; Ogumi, Z. Carbon-coated Si as a lithium-ion battery anode material. J. Electrochem. Soc. 2002, 149, A1598-A1603.

129

Kim, H.; Cho, J. Superior lithium electroactive mesoporous Si@carbon core−shell nanowires for lithium battery anode material. Nano Lett. 2008, 8, 3688-3691.

130

Bogart, T. D.; Oka, D.; Lu, X. T.; Gu, M.; Wang, C. M.; Korgel, B. A. Lithium ion battery peformance of silicon nanowires with carbon skin. ACS Nano 2014, 8, 915-22.

131

Chen, Y. M.; Li, X. Y.; Park, K.; Zhou, L. M.; Huang, H. T.; Mai, Y. W.; Goodenough, J. B. Hollow nanotubes of N-doped carbon on CoS. Angew. Chem., Int. Ed. 2016, 55, 15831-15834.

132

Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0 < x < -1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783-789.

133

Xiao, X. L.; Yang, L. M.; Zhao, H.; Hu, Z. B.; Li, Y. D. Facile synthesis of LiCoO2 nanowires with high electrochemical performance. Nano Res. 2012, 5, 27-32.

134

Xiao, X. L.; Liu, X. F.; Wang, L.; Zhao, H.; Hu, Z. B.; He, X. M.; Li, Y. D. LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries. Nano Res. 2012, 5, 395-401.

135

Shim, J. H.; Lee, K. S.; Missyul, A.; Lee, J.; Linn, B.; Lee, E. C.; Lee, S. Characterization of spinel LixCo2O4-coated LiCoO2 prepared with post-thermal treatment as a cathode material for lithium ion batteries. Chem. Mater. 2015, 27, 3273-3279.

136

Jung, Y. S.; Cavanagh, A. S.; Dillon, A. C.; Groner, M. D.; George, S. M.; Lee, S. H. Enhanced stability of LiCoO2 cathodes in lithium-ion batteries using surface modification by atomic layer deposition. J. Electrochem. Soc. 2010, 157, A75-A81.

137

Zhang, W.; Chi, Z. X.; Mao, W. X.; Lv, R. W.; Cao, A. M.; Wan, L. J. One-nanometer-precision control of Al2O3 nanoshells through a solution-based synthesis route. Angew. Chem., Int. Ed. 2014, 53, 12776-12780.

138

Park, J. S.; Mane, A. U.; Elam, J. W.; Croy, J. R. Amorphous metal fluoride passivation coatings prepared by atomic layer deposition on LiCoO2 for Li-ion batteries. Chem. Mater. 2015, 27, 1917-1920.

139

Wise, A. M.; Ban, C. M.; Weker, J. N.; Misra, S.; Cavanagh, A. S.; Wu, Z. C.; Li, Z.; Whittingham, M. S.; Xu, K.; George, S. M. et al. Effect of Al2O3 coating on stabilizing LiNi0.4Mn0.4Co0.2O2 cathodes. Chem. Mater. 2015, 27, 6146-6154.

140

Dai, X. Y.; Zhou, A. J.; Xu, J.; Lu, Y. T.; Wang, L. P.; Fan, C.; Li, J. Z. Extending the high-voltage capacity of LiCoO2cathode by direct coating of the composite electrode with Li2CO3via magnetron sputtering. J. Phys. Chem. C 2016, 120, 422-430.

141

Zhou, A. J.; Dai, X. Y.; Lu, Y. T.; Wang, Q. J.; Fu, M. S.; Li, J. Z. Enhanced interfacial kinetics and high-voltage/ high-rate performance of LiCoO2 cathode by controlled sputter-coating with a nanoscale Li4Ti5O12 ionic conductor. ACS Appl. Mater. Interfaces 2016, 8, 34123-34131.

142

Kalluri, S.; Yoon, M.; Jo, M.; Park, S.; Myeong, S.; Kim, J.; Dou, S. X.; Guo, Z. P.; Cho, J. Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells. Adv. Energy Mater. 2017, 7, 1601507.

143

Cho, J.; Kim, Y. J.; Kim, T. J.; Park, B. Zero-strain intercalation cathode for rechargeable Li-ion cell. Angew. Chem., Int. Ed. 2001, 40, 3367-3369.

144

He, X.; Wang, J.; Kloepsch, R.; Krueger, S.; Jia, H. P.; Liu, H. D.; Vortmann, B.; Li, J. Enhanced electrochemical performance in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method. Nano Res. 2014, 7, 110-118.

145

Kuwabata, S.; Masui, S.; Yoneyama, H. Charge-discharge properties of composites of LiMn2O4 and polypyrrole as positive electrode materials for 4 V class of rechargeable Li batteries. Electrochim. Acta 1999, 44, 4593-4600.

146

Du Pasquier, A.; Orsini, F.; Gozdz, A. S.; Tarascon, J. M. Electrochemical behaviour of LiMn2O4-PPy composite cathodes in the 4-V region. J. Power Sources 1999, 81-82, 607-611.

147

Li, C.; Zhang, H. P.; Fu, L. J.; Liu, H.; Wu, Y. P.; Rahm, E.; Holze, R.; Wu, H. Q. Cathode materials modified by surface coating for lithium ion batteries. Electrochim. Acta 2006, 51, 3872-3883.

148

Son, I. H.; Park, J. H.; Kwon, S.; Mun, J.; Choi, J. W. Self-terminated artificial SEI layer for nickel-rich layered cathode material via mixed gas chemical vapor deposition. Chem. Mater. 2015, 27, 7370-7379.

149

Xu, S. Z.; Jacobs, R. M.; Nguyen, H. M.; Hao, S. Q.; Mahanthappa, M.; Wolverton, C.; Morgan, D. Lithium transport through lithium-ion battery cathode coatings. J. Mater. Chem. A 2015, 3, 17248-17272.

150

Zheng, F. H.; Yang, C. H.; Xiong, X. H.; Xiong, J. W.; Hu, R. Z.; Chen, Y.; Liu, M. L. Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew. Chem., Int. Ed. 2015, 54, 13058-13062.

151

Du, K.; Xie, H. B.; Hu, G. R.; Peng, Z. D.; Cao, Y. B.; Yu, F. Enhancing the thermal and upper voltage performance of Ni-rich cathode material by a homogeneous and facile coating method: Spray-drying coating with nano-Al2O3. ACS Appl. Mater. Interfaces 2016, 8, 17713-17720.

152

Yan, P. F.; Zheng, J. M.; Zhang, X. F.; Xu, R.; Amine, K.; Xiao, J.; Zhang, J. G.; Wang, C. M. Atomic to nanoscale investigation of functionalities of an Al2O3 coating layer on a cathode for enhanced battery performance. Chem. Mater. 2016, 28, 857-863.

153

Myung, S. T.; Izumi, K.; Komaba, S.; Yashiro, H.; Bang, H. J.; Sun, Y. K.; Kumagai, N. Functionality of oxide coating for Li[Li0.05Ni0.4Co0.15Mn0.4]O2 as positive electrode materials for lithium-ion secondary batteries. J. Phys. Chem. C 2007, 111, 4061-4067.

154

Sun, Y. K.; Cho, S. W.; Lee, S. W.; Yoon, C. S.; Amine, K. AlF3-coating to improve high voltage cycling performance of LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium secondary batteries. J. Electrochem. Soc. 2007, 154, A168-A172.

155

Sun, Y. K.; Myung, S. T.; Park, B. C.; Yashiro, H. Improvement of the electrochemical properties of Li[Ni0.5Mn0.5]O2 by AlF3 coating. J. Electrochem. Soc. 2008, 155, A705-A710.

156

Zheng, J. M.; Zhang, Z. R.; Wu, X. B.; Dong, Z. X.; Zhu, Z.; Yang, Y. The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium-ion battery. J. Electrochem. Soc. 2008, 155, A775-A782.

157

Sun, Y. K.; Lee, Y. S.; Yoshio, M.; Amine, K. Synthesis and electrochemical properties of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode material for lithium secondary batteries. Electrochem. Solid-State Lett. 2002, 5, A99-A102.

158

Arrebola, J.; Caballero, A.; Hernán, L.; Morales, J.; Rodríguez Castellón, E.; Ramos Barrado, J. R. Effects of coating with gold on the performance of nanosized LiNi0.5Mn1.5O4 for lithium batteries. J. Electrochem. Soc. 2007, 154, A178-A184.

159

Liu, J.; Manthiram, A. Understanding the improvement in the electrochemical properties of surface modified 5 V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells. Chem. Mater. 2009, 21, 1695-1707.

160

Li, J. C.; Baggetto, L.; Martha, S. K.; Veith, G. M.; Nanda, J.; Liang, C. D.; Dudney, N. J. An artificial solid electrolyte interphase enables the use of a LiNi0.5Mn1.5O4 5 V cathode with conventional electrolytes. Adv. Energy Mater. 2013, 3, 1275-1278.

161

Wu, X. B.; Wang, S. H.; Lin, X. C.; Zhong, G. M.; Gong, Z. L.; Yang, Y. Promoting long-term cycling performance of high-voltage Li2CoPO4F by the stabilization of electrode/ electrolyte interface. J. Mater. Chem. A 2014, 2, 1006-1013.

162

Kraytsberg, A.; Ein-Eli, Y. Higher, stronger, better… A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv. Energy Mater. 2012, 2, 922-939.

163

Choi, N. S.; Han, J. G.; Ha, S. Y.; Park, I.; Back, C. K. Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries. RSC Adv. 2015, 5, 2732-2748.

164

Ma, J.; Hu, P.; Cui, G. L.; Chen, L. Q. Surface and interface issues in spinel LiNi0.5Mn1.5O4: Insights into a potential cathode material for high energy density lithium ion batteries. Chem. Mater. 2016, 28, 3578-3606.

165

Fang, X.; Lin, F.; Nordlund, D.; Mecklenburg, M.; Ge, M. Y.; Rong, J. P.; Zhang, A. Y.; Shen, C. F.; Liu, Y. H.; Cao, Y. et al. Atomic insights into the enhanced surface stability in high voltage cathode materials by ultrathin coating. Adv. Funct. Mater. 2017, 27, 1602873.

166

Kim, Y.; Dudney, N. J.; Chi, M. F.; Martha, S. K.; Nanda, J.; Veith, G. M.; Liang, C. D. A perspective on coatings to stabilize high-voltage cathodes: LiNi0.5Mn1.5O4 with sub-nanometer LiPON cycled with LiPF6 electrolyte. J. Electrochem. Soc. 2013, 160, A3113-A3125.

167

Kim, M. C.; Kim, S. H.; Aravindan, V.; Kim, W. S.; Lee, S. Y.; Lee, Y. S. Ultrathin polyimide coating for a spinel LiNi0.5Mn1.5O4 cathode and its superior lithium storage properties under elevated temperature conditions. J. Electrochem. Soc. 2013, 160, A1003-A1008.

168

Cho, J.; Kim, G. Enhancement of thermal stability of LiCoO2 by LiMn2O4 coating. Electrochem. Solid-State Lett. 1999, 2, 253-255.

169

Kim, J. G.; Son, B.; Mukherjee, S.; Schuppert, N.; Bates, A.; Kwon, O.; Choi, M. J.; Chung, H. Y.; Park, S. A review of lithium and non-lithium based solid state batteries. J. Power Sources 2015, 282, 299-322.

170

Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

171

Sun, C. W.; Liu, J.; Gong, Y. D.; Wilkinson, D. P.; Zhang, J. J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 2017, 33, 363-386.

172

Santhanagopalan, D.; Qian, D. N.; McGilvray, T.; Wang, Z. Y.; Wang, F.; Camino, F.; Graetz, J.; Dudney, N.; Meng, Y. S. Interface limited lithium transport in solid-state batteries. J. Phys. Chem. Lett. 2014, 5, 298-303.

173

Zhang, Z. J.; Chou, S. L.; Gu, Q. F.; Liu, H. K.; Li, H. J.; Ozawa, K.; Wang, J. Z. Enhancing the high rate capability and cycling stability of LiMn2O4 by coating of solid-state electrolyte LiNbO3. ACS Appl. Mater. Interfaces 2014, 6, 22155-22165.

174

Oh, G.; Hirayama, M.; Kwon, O.; Suzuki, K.; Kanno, R. Effect of surface modification and oxygen deficiency on intercalation property of lithium nickel manganese oxide in an all-solid-state battery. Solid State Ionics 2016, 288, 244-247.

175

Visbal, H.; Aihara, Y.; Ito, S.; Watanabe, T.; Park, Y.; Doo, S. The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S-P2S5 glass-ceramics. J. Power Sources 2016, 314, 85-92.

176

Ohta, N.; Takada, K.; Zhang, L.; Ma, R.; Osada, M.; Sasaki, T. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv. Mater. 2006, 18, 2226-2229.

177

Ohta, N.; Takada, K.; Sakaguchi, I.; Zhang, L.Q.; Ma, R. Z.; Fukuda, K.; Osada, M.; Sasaki, T. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem. Commun. 2007, 9, 1486-1490.

178

Sakuda, A.; Kitaura, H.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO2 coated with Li2O-SiO2 glasses. Electrochem. Solid-State Lett. 2008, 11, A1-A3.

179

Takada, K.; Ohta, N.; Zhang, L. Q.; Fukuda, K.; Sakaguchi, I.; Ma, R. Z.; Osada, M.; Sasaki, T. Interfacial modification for high-power solid-state lithium batteries. Solid State Ionics 2008, 179, 1333-1337.

180

Okada, K.; Machida, N.; Naito, M.; Shigematsu, T.; Ito, S.; Fujiki, S.; Nakano, M.; Aihara, Y. Preparation and electrochemical properties of LiAlO2-coated Li(Ni1/3Mn1/3Co1/3)O2 for all-solid-state batteries. Solid State Ionics 2014, 255, 120-127.

181

Yubuchi, S.; Ito, Y.; Matsuyama, T.; Hayashi, A.; Tatsumisago, M. 5 V class LiNi0.5Mn1.5O4 positive electrode coated with Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte. Solid State Ionics 2016, 285, 79-82.

182

Sakuda, A.; Kitaura, H.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. Modification of interface between LiCoO2 electrode and Li2S-P2S5 solid electrolyte using Li2O-SiO2 glassy layers. J. Electrochem. Soc. 2009, 156, A27-A32.

183

Sakuda, A.; Kitaura, H.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. All-solid-state lithium secondary batteries with oxide-coated LiCoO2 electrode and Li2S-P2S5 electrolyte. J. Power Sources 2009, 189, 527-530.

184

Noh, S.; Kim, J.; Eom, M.; Shin, D. Surface modification of LiCoO2 with Li3xLa2/3−xTiO3 for all-solid-state lithium ion batteries using Li2S-P2S5 glass-ceramic. Ceram. Int. 2013, 39, 8453-8458.

185

Cheng, Y. W.; Lin, C. K.; Chu, Y. C.; Abouimrane, A.; Chen, Z. H.; Ren, Y.; Liu, C. P.; Tzeng, Y.; Auciello, O. Electrically conductive ultrananocrystalline diamond-coated natural graphite-copper anode for new long life lithium-ion battery. Adv. Mater. 2014, 26, 3724-3729.

186

Li, J. C.; Xiao, X. C.; Cheng, Y. T.; Verbrugge, M. W. Atomic layered coating enabling ultrafast surface kinetics at silicon electrodes in lithium ion batteries. J Phys. Chem. Lett. 2013, 4, 3387-3391.

187

Chen, S. Q.; Shen, L. F.; van Aken, P. A.; Maier, J.; Yu, Y. Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv. Mater. , 2017, 29, 1605650.

188

Zhang, K.; Li, P.; Ma, M.; Park, J. H. Core-shelled low-oxidation state oxides@reduced graphene oxides cubes via pressurized reduction for highly stable lithium ion storage. Adv. Funct. Mater. 2016, 26, 2959-2965.

189

Kim, Y.; Veith, G. M.; Nanda, J.; Unocic, R. R.; Chi, M. F.; Dudney, N. J. High voltage stability of LiCoO2 particles with a nano-scale lipon coating. Electrochim. Acta 2011, 56, 6573-6580.

190

Teranishi, T.; Yoshikawa, Y.; Sakuma, R.; Hashimoto, H.; Hayashi, H.; Kishimoto, A.; Fujii, T. High-rate performance of ferroelectric BaTiO3-coated LiCoO2 for Li-ion batteries. Appl. Phys. Lett. 2014, 105, 143904.

191

Zhang, J. C.; Gao, R.; Sun, L. M.; Zhang, H.; Hu, Z. B.; Liu, X. F. Unraveling the multiple effects of Li2ZrO3 coating on the structural and electrochemical performances of LiCoO2 as high-voltage cathode materials. Electrochim. Acta 2016, 209, 102-110.

192

Shim, J. H.; Lee, J.; Han, S. Y.; Lee, S. Synergistic effects of coating and doping for lithium ion battery cathode materials: Synthesis and characterization of lithium titanate-coated LiCoO2 with Mg doping. Electrochim. Acta 2015, 186, 201-208.

193

Lee, M. J.; Lee, S.; Oh, P.; Kim, Y.; Cho, J. High performance LiMn2O4 cathode materials grown with epitaxial layered nanostructure for Li-ion batteries. Nano Lett. 2014, 14, 993-999.

194

Oh, P.; Oh, S. M.; Li, W. D.; Myeong, S.; Cho, J.; Manthiram, A. High-performance heterostructured cathodes for lithium-ion batteries with a Ni-rich layered oxide core and a Li-rich layered oxide shell. Adv. Sci. 2016, 3, 1600184.

195

Aykol, M.; Kirklin, S.; Wolverton, C. Thermodynamic aspects of cathode coatings for lithium-ion batteries. Adv. Energy Mater. 2014, 4, 1400690.

196

Aykol, M.; Kim, S.; Hegde, V. I.; Snydacker, D.; Lu, Z.; Hao, S. Q.; Kirklin, S.; Morgan, D.; Wolverton, C. High-throughput computational design of cathode coatings for Li-ion batteries. Nat. Commun. 2016, 7, 13779.

Nano Research
Pages 4115-4138
Cite this article:
Zhu Z, Chen X. Artificial interphase engineering of electrode materials to improve the overall performance of lithium-ion batteries. Nano Research, 2017, 10(12): 4115-4138. https://doi.org/10.1007/s12274-017-1647-7

669

Views

44

Crossref

N/A

Web of Science

40

Scopus

0

CSCD

Altmetrics

Received: 19 February 2017
Revised: 18 April 2017
Accepted: 24 April 2017
Published: 19 August 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return