Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Heteroatom doping can open the bandgap and increase the carrier density, thus extending the applications of graphene. Iron chloride (FeCl3) intercalation has proven to be an efficient method for the heavy doping of graphene. In this study, we prepared continuous chemical vapor deposited graphene (CVD-G) consisting of hexagonal adlayer domains to study the FeCl3 intercalation. The structure of the FeCl3-treated CVD-G was easily characterized via atomic force microscopy because of the change in the interlayer distance. FeCl3 crystals several nanometers thick were integrated with the graphene surface, and FeCl3 layer flakes were intercalated between the CVD-G adlayers. The G-band position and two-dimensional band shape in the Raman spectra confirmed the intercalation of the FeCl3 between the graphene layers. The FeCl3 intercalation increased the electrical conductivity of the CVD-G with a well-maintained transmittance, which could be beneficial for a sensitive photodetector.
Herein, D.; Braun, T.; Schlӧgl, R. On the nature of the so-called iron-graphite. Carbon 1997, 35, 17-29.
Dresselhaus, M. S.; Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 2002, 51, 1-186.
Hooley, J. G.; Bartlett, M. The intercalation isotherm of ferric chloride vapor on graphite from 300 to 350 ℃. Carbon 1967, 5, 417-422.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
Zhan, D.; Sun, L.; Ni, Z. H.; Liu, L.; Fan, X. F.; Wang, Y. Y.; Yu, T.; Lam, Y. M.; Huang, W.; Shen, Z. X. FeCl3-based few-layer graphene intercalation compounds: Single linear dispersion electronic band structure and strong charge transfer doping. Adv. Funct. Mater. 2010, 20, 3504-3509.
Zhao, W. J.; Tan, P. H.; Liu, J.; Ferrari, A. C. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of fermi level, layer by layer decoupling, and stability. J. Am. Chem. Soc. 2011, 133, 5941-5946.
Khrapach, I.; Withers, F.; Bointon, T. H.; Polyushkin, D. K.; Barnes, W. L.; Russo, S.; Craciun, M. F. Novel highly conductive and transparent graphene-based conductors. Adv. Mater. 2012, 24, 2844-2849.
Zou, X. Q.; Zhan, D.; Fan, X. F.; Lee, D.; Nair, S. K.; Sun, L.; Ni, Z. H.; Luo, Z. Q.; Liu, L.; Yu, T. et al. Ultrafast carrier dynamics in pristine and FeCl3-intercalated bilayer graphene. Appl. Phys. Lett. 2010, 97, 141910.
Bointon, T. H.; Khrapach, I.; Yakimova, R.; Shytov, A. V.; Craciun, M. F.; Russo, S. Approaching magnetic ordering in graphene materials by FeCl3 intercalation. Nano Lett. 2014, 14, 1751-1755.
Yang, J. W.; Lee, G.; Kim, J. S.; Kim, K. S. Gap opening of graphene by dual FeCl3-acceptor and K-donor doping. J. Phys. Chem. Lett. 2011, 2, 2577-2581.
Nathaniel, J.; Wang, X. -Q. Tunable electron and hole doping in FeCl3 intercalated graphene. Appl. Phys. Lett. 2012, 100, 213112.
Song, Y.; Fang, W. J.; Hsu, A. L.; Kong, J. Iron (Ⅲ) chloride doping of CVD graphene. Nanotechnology 2014, 25, 395701.
Bointon, T. H.; Jones, G. F.; De Sanctis, A.; Hill-Pearce, R.; Craciun, M. F.; Russo, S. Large-area functionalized CVD graphene for work function matched transparent electrodes. Sci. Rep. 2015, 5, 16464.
Jiang, J. K.; Kang, J. H.; Cao, W.; Xie, X. J.; Zhang, H. J.; Chu, J. H.; Liu, W.; Banerjee, K. Intercalation doped multilayer-graphene-nanoribbons for next-generation interconnects. Nano Lett. 2017, 17, 1482-1488, .
Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. -H.; Kim, P.; Choi, J. -Y.; Hong, B. H. Large- scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706-710.
Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.
Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. -S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574-578.
Sun, J. Y.; Chen, Z. L.; Yuan, L.; Chen, Y. B.; Ning, J.; Liu, S. W.; Ma, D. L.; Song, X. J.; Psriydarshi, M. K.; Bachmatiuk, A. et al. Direct chemical-vapor-deposition-fabricated, large- scale graphene glass with high carrier mobility and uniformity for touch panel applications. ACS Nano 2016, 10, 11136- 11144.
Hong, J. Y.; Kim, W.; Choi, D.; Kong, J.; Park, H. S. Omnidirectionally stretchable and transparent graphene electrodes. ACS Nano 2016, 10, 9446-9455.
Ding, D.; Solís-Fernández, P.; Hibino, H.; Ago, H. Spatially controlled nucleation of single-crystal graphene on Cu assisted by stacked Ni. ACS Nano 2016, 10, 11196-11204.
Lee, H. C.; Jo, S. B.; Lee, E.; Yoo, M. S.; Kim, H. H.; Lee, S. K.; Lee, W. H.; Cho, K. Facet-mediated growth of high- quality monolayer graphene on arbitrarily rough copper surfaces. Adv. Mater. 2016, 28, 2010-2017.
Wood, J. D.; Schmucker, S. W.; Lyons, A. S.; Pop, E.; Lyding, J. W. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 2011, 11, 4547-4554.
Matsumoto, R.; Okabe, Y. Electrical conductivity and air stability of FeCl3, CuCl2, MoCl5, and SbCl5 graphite intercalation compounds prepared from flexible graphite sheets. Synthetic Met. 2016, 212, 62-68.
Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235-246.
Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.
Underhill, C.; Leung, S. Y.; Dresselhaus, G.; Dresselhaus, M. S. Infrared and Raman spectroscopy of graphite-ferric chloride. Solid State Commun. 1979, 29, 769-774.
Caswell, N.; Solin, S. A. Vibrational excitations of pure FeCl3 and graphite intercalated with ferric chloride. Solid State Commun. 1978, 27, 961-967.
Chacón-Torres, J. C.; Wirtz, L.; Pichler, T. Raman spectroscopy of graphite intercalation compounds: Charge transfer, strain, and electron-phonon coupling in graphene layers. Phys. Status Solidi B 2014, 251, 2337-2355.
Torres Alonso, E.; Karkera, G.; Jones, G. F.; Craciun, M. F.; Russo, S. Homogeneously bright, flexible, and foldable lighting devices with functionalized graphene electrodes. ACS Appl. Mater. Interfaces 2016, 8, 16541-16545.
Hao, Y. F.; Wang, L.; Liu, Y. Y.; Chen, H.; Wang, X. H.; Tan, C.; Nie, S.; Suk, J. W.; Jiang, T. F.; Liang, T. F. et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 2016, 11, 426-431.
Han, W. -P.; Li, Q. -Q.; Lu, Y.; Yan, X.; Zhao, H.; Long, Y. -Z. Optical contrast spectra studies for determining thickness of stage-1 graphene-FeCl3 intercalation compounds. AIP Adv. 2016, 6, 075219.
Kim, N.; Kim, K. S.; Jung, N.; Brus, L.; Kim, P. Synthesis and electrical characterization of magnetic bilayer graphene intercalate. Nano Lett. 2011, 11, 860-865.
Li, Q. Y.; Chou, H.; Zhong, J. -H.; Liu, J. -Y.; Dolocan, A.; Zhang, J. Y.; Zhou, Y. H.; Ruoff, R. S.; Chen, S. S.; Cai, W. W. Growth of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett. 2013, 13, 486-490.
Wang, Z. -J.; Dong, J. C.; Cui, Y.; Eres, G.; Timpe, O.; Fu, Q.; Ding, F.; Schloegl, R.; Willinger, M. -G. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging. Nat. Commun. 2016, 7, 13256.
Boothroyd, C. B.; Moreno, M. S.; Duchamp, M.; Kovács, A.; Monge, N.; Morales, G. M.; Barbero, C. A.; Dunin-Borkowski, R. E. Atomic resolution imaging and spectroscopy of barium atoms and functional groups on graphene oxide. Ultramicroscopy 2014, 145, 66-73.
Wehenkel, D. J.; Bointon, T. H.; Booth, T.; Bøggild, P.; Craciun, M. F.; Russo, S. Unforeseen high temperature and humidity stability of FeCl3 intercalated few layer graphene. Sci. Rep. 2015, 5, 7609.
Begin, D.; Alain, E.; Furdin, G.; Mareche, J. F.; Delcroix, P.; Le Caer, G. Carbonization of mixtures of coal tar pitch and graphite FeCl3 compounds. A mӧssbauer study. Carbon 1996, 34, 331-337.
Ni, Z. H.; Wang, H. M.; Luo, Z. Q.; Wang, Y. Y.; Yu, T.; Wu, Y. H.; Shen, Z. X. The effect of vacuum annealing on graphene. J. Raman Spectrosc. 2010, 41, 479-483.
Withers, F.; Bointon, T. H.; Craciun, M. F.; Russo, S. All- graphene photodetectors. ACS Nano 2013, 7, 5052-5057.
Liu, W.; Kang, J.; Banerjee, K. Characterization of FeCl3 intercalation doped CVD few-layer graphene. IEEE Electron Device Lett. 2016, 37, 1246-1249.
Güneş, F.; Shin, H. J.; Biswas, C.; Han, G. H.; Kim, E. S.; Chae, S. J.; Choi, J. Y.; Lee, Y. H. Layer-by-layer doping of few-layer graphene film. ACS Nano 2010, 4, 4595-4600.
Li, X. M.; Zhu, M.; Du, M. D.; Lv, Z.; Zhang, L.; Li, Y. C.; Yang, Y.; Yang, T. T.; Li, X.; Wang, K. L. et al. High detectivity graphene-silicon heterojunction photodetector. Small 2016, 12, 595-601.
Li, X. M.; Zhu, H. W.; Wang, K. L.; Cao, A. Y.; Wei, J. Q.; Li, C. Y.; Jia, Y.; Li, Z.; Li, X.; Wu, D. H. Graphene-on- silicon schottky junction solar cells. Adv. Mater. 2010, 22, 2743-2748.
Gurarslan, A.; Yu, Y. F.; Su, L. Q.; Yu, Y. L.; Suarez, F.; Yao, S. S.; Zhu, Y.; Ozturk, M.; Zhang, Y.; Cao, L. Y. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 2014, 8, 11522-11528.
Ma, D. L.; Shi, J. P.; Ji, Q. Q.; Chen, K.; Yin, J. B.; Lin, Y. W.; Zhang, Y.; Liu, M. X.; Feng, Q. L.; Song, X. J. et al. A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Res. 2015, 8, 3662-3672.