AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Review of nanostructured current collectors in lithium–sulfur batteries

Long KongHong-Jie PengJia-Qi HuangQiang Zhang ( )
Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
Show Author Information

Graphical Abstract

Abstract

Lithium–sulfur (Li–S) batteries are receiving increasing attention because of their high theoretical energy density and the natural abundance of S. However, their practical applications are impeded by the low areal S loading in the cathode and the fatal Li dendrites in the anode of the Li-S cells, which yield an inferior practical energy density and introduce safety concerns, respectively. In this review, we focus on an emerging approach—the nanostructured current collector—to overcome these two critical challenges for Li-S batteries. We describe the general attributes of nanostructured current collectors and examine how these attributes enhance the S utilization with a high S loading and suppress the Li dendrites by regulating the Li-deposition behavior. We present various assembly blocks that have been used for the construction of advanced nanostructured current collectors to build better S cathodes and Li anodes. Finally, we investigate the current challenges and possible solutions regarding the practical applications of nanostructured current collectors in Li-S batteries.

References

1

Liu, J.; Zhang, J. G.; Yang, Z. G.; Lemmon, J. P.; Imhoff, C.; Graff, G. L.; Li, L. Y.; Hu, J. Z.; Wang, C. M.; Xiao, J. et al. Materials science and materials chemistry for large scale electrochemical energy storage: From transportation to electrical grid. Adv. Funct. Mater. 2013, 23, 929-946.

2

Choi, N. S.; Chen, Z. H.; Freunberger, S. A.; Ji, X. L.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem., Int. Ed. 2012, 51, 9994-10024.

3

Ellingsen, L. A. W.; Hung, C. R.; Majeau-Bettez, G.; Singh, B.; Chen, Z. W.; Whittingham, M. S.; Strømman, A. H. Nanotechnology for environmentally sustainable electromobility. Nat. Nanotechnol. 2016, 11, 1039-1051.

4

Tarascon, J. -M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

5

Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

6

Chen, R. J.; Luo, R.; Huang, Y. X.; Wu, F.; Li, L. Advanced high energy density secondary batteries with multi-electron reaction materials. Adv. Sci. 2016, 3, 1600051.

7

Sun, Y. M.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.

8

Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium-sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980-2006.

9

Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186-13200.

10

Liang, J.; Sun, Z. -H.; Li, F.; Cheng, H. -M. Carbon materials for Li-S batteries: Functional evolution and performance improvement. Energy Storage Mater. 2016, 2, 76-106.

11

Pope, M. A.; Aksay, I. A. Structural design of cathodes for Li-S batteries. Adv. Energy Mater. 2015, 5, 1500124.

12

Li, Z.; Huang, Y. M.; Yuan, L. X.; Hao, Z. X.; Huang, Y. H. Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries. Carbon 2015, 92, 41-63.

13

Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605-5634.

14

Borchardt, L.; Oschatz, M.; Kaskel, S. Carbon materials for lithium sulfur batteries-ten critical questions. Chem. Eur. J. 2016, 22, 7324-7351.

15

Wang, J. G.; Xie, K. Y.; Wei, B. Q. Advanced engineering of nanostructured carbons for lithium-sulfur batteries. Nano Energy 2015, 15, 413-444.

16

Cao, R. G.; Xu, W.; Lv, D. P.; Xiao, J.; Zhang, J. G. Anodes for rechargeable lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1402273.

17

Liu, M. N.; Ye, F. M.; Li, W. F.; Li, H. F.; Zhang, Y. G. Chemical routes toward long-lasting lithium/sulfur cells. Nano Res. 2016, 9, 94-116.

18

Huang, J. Q.; Zhang, Q.; Wei, F. Multi-functional separator/Interlayer system for high-stable lithium-sulfur batteries: Progress and prospects. Energy Storage Mater. 2015, 1, 127-145.

19

Yu, M. P.; Li, R.; Wu, M. M.; Shi, G. Q. Graphene materials for lithium-sulfur batteries. Energy Storage Mater. 2015, 1, 51-73.

20

Zhang, X. Q.; Cheng, X. B.; Zhang, Q. Nanostructured energy materials for electrochemical energy conversion and storage: A review. J. Energy Chem. 2016, 25, 967-984.

21

Ma, L.; Hendrickson, K. E.; Wei, S. Y.; Archer, L. A. Nanomaterials: Science and applications in the lithium-sulfur battery. NanoToday 2015, 10, 315-338.

22

Kang, W. M.; Deng, N. P.; Ju, J. G.; Li, Q. X.; Wu, D. Y.; Ma, X. M.; Li, L.; Naebe, M.; Cheng, B. W. A review of recent developments in rechargeable lithium-sulfur batteries. Nanoscale 2016, 8, 16541-16588.

23

Peng, H. -J.; Huang, J. -Q.; Cheng, X. -B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

24

Rauh, R. D.; Shuker, F. S.; Marston, J. M.; Brummer, S. B. Formation of lithium polysulfides in aprotic media. J. Inorg. Nuclear Chem. 1977, 39, 1761-1766.

25
Chen, X.; Hou, T. Z.; Li, B.; Yan, C.; Zhu, L.; Guan, C.; Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode. Energy Storage Mater. in press, DOI: 10.1016/j.ensm.2017.01.003.https://doi.org/10.1016/j.ensm.2017.01.003
26

Zhang, S. S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sources 2013, 231, 153-162.

27

Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

28

Zhang, C.; Yang, Q. H. Packing sulfur into carbon framework for high volumetric performance lithium-sulfur batteries. Sci. China Mater. 2015, 58, 349-354.

29

Zhang, R.; Li, N. W.; Cheng, X. B.; Yin, Y. X.; Zhang, Q.; Guo, Y. G. Advanced micro/nanostructures for lithium metal anodes. Adv. Sci. 2017, 4, 1600445.

30

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2015, 3, 1500213.

31

Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 2016, 28, 2888-2895.

32

Huang, J. Q.; Peng, H. J.; Liu, X. Y.; Nie, J. Q.; Cheng, X. B.; Zhang, Q.; Wei, F. Flexible all-carbon interlinked nanoarchitectures as cathode scaffolds for high-rate lithium- sulfur batteries. J. Mater. Chem. A 2014, 2, 10869-10875.

33

Liu, M. N.; Ye, F. M.; Li, W. F.; Li, H. L.; Zhang, Y. G. Chemical routes toward long-lasting lithium/sulfur cells. Nano Res. 2016, 9, 94-116.

34

Peng, H. J.; Huang, J. Q.; Zhao, M. Q.; Zhang, Q.; Cheng, X. B.; Liu, X. Y.; Qian, W. Z.; Wei, F. Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 2772-2781.

35

Ji, X L..; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500-506.

36

Peng, H. J.; Zhang, Z. W.; Huang, J. Q.; Zhang, G.; Xie, J.; Xu, W. T.; Shi, J. L.; Chen, X.; Cheng, X. B.; Zhang, Q. A cooperative interface for highly efficient lithium-sulfur batteries. Adv. Mater. 2016, 28, 9551-9558.

37

Ma, L.; Zhuang, H. L.; Lu, Y. Y.; Moganty, S. S.; Hennig, R. G.; Archer, L. A. Tethered molecular sorbents: Enabling metal-sulfur battery cathodes. Adv. Energy Mater. 2014, 4, 1400390.

38

Tao, X. Y.; Wang, J. G.; Ying, Z. G.; Cai, Q. X.; Zheng, G. Y.; Gan, Y. P.; Huang, H.; Xia, Y.; Liang, C.; Zhang, W. K. et al. Strong sulfur binding with conducting magnéli-phase TinO2n-1 nanomaterials for improving lithium-sulfur batteries. Nano Lett. 2014, 14, 5288-5294.

39

Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L. F. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 2014, 5, 4759.

40

Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Peng, H. J.; Shi, J. L.; Huang, J. Q.; Wang, J. F.; Wei, F.; Zhang, Q. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 2016, 28, 2155-2162.

41

Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. -W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618-623.

42

Liu, Y. Y.; Lin, D. C.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 2016, 7, 10992.

43

Liang, Z.; Lin, D. C.; Zhao, J.; Lu, Z. D.; Liu, Y. Y.; Liu, C.; Lu, Y. Y.; Wang, H. T.; Yan, K.; Tao, X. Y. et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 2862-2867.

44

Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2016, 28, 1853-1858.

45

Liu, Y. Y.; Lin, D. C.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 2016, 29, 1605531.

46

Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M. et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv. Mater. 2015, 27, 5241-5247.

47

Yan, K.; Lu, Z. D.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010.

48

Xu, Q.; Yang, Y. F.; Shao, H. X. Substrate effects on Li+ electrodeposition in Li secondary batteries with a competitive kinetics model. Phys. Chem. Chem. Phys. 2015, 17, 20398-20406.

49

Cheng, X. -B.; Yan, C.; Chen, X.; Guan, C.; Huang, J. -Q.; Peng, H. -J.; Zhang, R.; Yang, S. -T.; Zhang, Q. Implantable solid electrolyte interphase in lithium-metal batteries. Chem 2017, 2, 258-270.

50

Kazyak, E.; Wood, K. N.; Dasgupta, N. P. Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments. Chem. Mater. 2015, 27, 6457-6462.

51

Song, M. -K.; Cairns, E. J.; Zhang, Y. G. Lithium/sulfur batteries with high specific energy: Old challenges and new opportunities. Nanoscale 2013, 5, 2186-2204.

52

Pang, Q.; Liang, X.; Kwok, C. Y.; Kulisch, J.; Nazar, L. F. A comprehensive approach toward stable lithium-sulfur batteries with high volumetric energy density. Adv. Energy Mater. 2016, 6, 1601630.

53

Zhou, G. M.; Li, L.; Ma, C. Q.; Wang, S. G.; Shi, Y.; Koratkar, N.; Ren, W. C.; Li, F.; Cheng, H. -M. A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries. Nano Energy 2015, 11, 356-365.

54

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194-206.

55

Fang, R. P.; Zhao, S. Y.; Hou, P. X.; Cheng, M.; Wang, S. G.; Cheng, H. M.; Liu, C.; Li, F. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries. Adv. Mater. 2016, 3374-3382.

56

Rao, M. M.; Song, X. Y.; Liao, H. G.; Cairns, E. J. Carbon nanofiber-sulfur composite cathode materials with different binders for secondary Li/S cells. Electrochim. Acta 2012, 65, 228-233.

57

Wang, J. L.; Yao, Z. D.; Monroe, C. W.; Yang, J.; Nuli, Y. Carbonyl-β-cyclodextrin as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Adv. Funct. Mater. 2013, 23, 1194-1201.

58

Strubel, P.; Thieme, S.; Weller, C.; Althues, H.; Kaskel, S. Insights into the redistribution of sulfur species during cycling in lithium-sulfur batteries using physisorption methods. Nano Energy 2017, 34, 437-441.

59

Song, J. X.; Gordin, M. L.; Xu, T.; Chen, S. R.; Yu, Z. X.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y. H.; Wang, D. H. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. Angew. Chem., Int. Ed. 2015, 54, 4325-4329.

60

Myung, S. -T.; Hitoshi, Y.; Sun, Y. -K. Electrochemical behavior and passivation of current collectors in lithium-ion batteries. J. Mater. Chem. 2011, 21, 9891-9911.

61

Morita, M.; Shibata, T.; Yoshimoto, N.; Ishikawa, M. Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries. Electrochim. Acta 2002, 47, 2787-2793.

62

Zu, C. X.; Azimi, N.; Zhang, Z. C.; Manthiram, A. Insight into lithium-metal anodes in lithium-sulfur batteries with a fluorinated ether electrolyte. J. Mater. Chem. A 2015, 3, 14864-14870.

63

Suo, L. M.; Hu, Y. -S.; Li, H.; Armand, M.; Chen, L. Q. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481.

64

Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 2002, 148, 405-416.

65

Bieker, G.; Winter, M.; Bieker, P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys. 2015, 17, 8670-8679.

66

Fleury, V.; Chazalviel, J. -N.; Rosso, M.; Sapoval, B. The role of the anions in the growth speed of fractal electrodeposits. J. Electroanal. Chem. Interfacial Electrochem. 1990, 290, 249-255.

67

Chazalviel, J. -N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 1990, 42, 7355-7367.

68

Rosso, M.; Gobron, T.; Brissot, C.; Chazalviel, J. -N.; Lascaud, S. Onset of dendritic growth in lithium/polymer cells. J. Power Sources 2001, 97-98, 804-806.

69

Ji, X. L.; Liu, D. -Y.; Prendiville, D. G.; Zhang, Y. C.; Liu, X. N.; Stucky, G. D. Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition. NanoToday 2012, 7, 10-20.

70

Yang, C. -P.; Yin, Y. -X.; Zhang, S. -F.; Li, N. -W.; Guo, Y. -G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

71

Yan, K.; Lee, H. -W.; Gao, T.; Zheng, G. Y.; Yao, H. B.; Wang, H. T.; Lu, Z. D.; Zhou, Y.; Liang, Z.; Liu, Z. F. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 2014, 14, 6016-6022.

72

Fu, Y. Z.; Su, Y. S.; Manthiram, A. Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes. Angew. Chem., Int. Ed. 2013, 52, 6930-6935.

73

Barchasz, C.; Mesguich, F.; Dijon, J.; Leprêtre, J. -C.; Patoux, S.; Alloin, F. Novel positive electrode architecture for rechargeable lithium/sulfur batteries. J. Power Sources 2012, 211, 19-26.

74

Huang, J. -Q.; Zhang, Q.; Zhang, S. -M.; Liu, X. -F.; Zhu, W. C.; Qian, W. -Z.; Wei, F. Aligned sulfur-coated carbon nanotubes with a polyethylene glycol barrier at one end for use as a high efficiency sulfur cathode. Carbon 2013, 58, 99-106.

75

Zhou, G. M.; Paek, E.; Hwang, G. S.; Manthiram, A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 2015, 6, 7760.

76

Hu, G. J.; Xu, C.; Sun, Z. H.; Wang, S. G.; Cheng, H. M.; Li, F.; Ren, W. C. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries. Adv. Mater. 2015, 28, 1603-1609.

77

Han, K.; Shen, J. M.; Hao, S. Q.; Ye, H. Q.; Wolverton, C.; Kung, M. C.; Kung, H. H. Free-standing nitrogen-doped graphene paper as electrodes for high-performance lithium/dissolved polysulfide batteries. ChemSusChem 2014, 7, 2545-2553.

78

Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. W.; Wang, S. G.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. A graphene- pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv. Mater. 2014, 26, 625-631.

79

Zhu, L.; Peng, H. -J.; Liang, J. Y.; Huang, J. -Q.; Chen, C. -M.; Guo, X. F.; Zhu, W. C.; Li, P.; Zhang, Q. Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium-sulfur batteries. Nano Energy 2015, 11, 746-755.

80

Miao, L. X.; Wang, W. K.; Yuan, K. G.; Yang, Y. S.; Wang, A. B. A lithium-sulfur cathode with high sulfur loading and high capacity per area: A binder-free carbon fiber cloth- sulfur material. Chem. Commun. 2014, 50, 13231-13234.

81

Li, Z.; Zhang, J. T.; Chen, Y. M.; Li, J.; Lou, X. W. Pie-like electrode design for high-energy density lithium-sulfur batteries. Nat. Commun. 2014, 6, 8850.

82

Yan, J. H.; Liu, X. B.; Qi, H.; Li, W. Y.; Zhou, Y.; Yao, M.; Li, B. Y. High-performance lithium-sulfur batteries with a cost-effective carbon paper electrode and high sulfur-loading. Chem. Mater. 2015, 27, 6394-6401.

83

Waluś, S.; Barchasz, C.; Bouchet, R.; Martin, J. -F.; Leprêtre, J. -C.; Alloin, F. Investigation of non-woven carbon paper as a current collector for sulfur positive electrode—Understanding of the mechanism and potential applications for Li/S batteries. Electrochim. Acta 2016, 211, 697-703.

84

Chung, S. -H.; Manthiram, A. Low-cost, porous carbon current collector with high sulfur loading for lithium-sulfur batteries. Electrochem. Commun. 2014, 38, 91-95.

85

Zhang, Y.; Bakenov, Z.; Zhao, Y.; Konarov, A.; Wang, Q.; Chen, P. Three-dimensional carbon fiber as current collector for lithium/sulfur batteries. Ionics 2014, 20, 803-808.

86

Wu, F. X.; Zhao, E. B.; Gordon, D.; Xiao, Y. R.; Hu, C. C.; Yushin, G. Infiltrated porous polymer ssheets as free-standing flexible lithium-sulfur battery electrodes. Adv. Mater. 2016, 28, 6365-6371.

87

Chung, S. -H.; Manthiram, A. Lithium-sulfur batteries with superior cycle stability by employing porous current collectors. Electrochim. Acta 2013, 107, 569-576.

88

Babu, G.; Ababtain, K.; Ng, K. Y. S.; Arava, L. M. R. Electrocatalysis of lithium polysulfides: Current collectors as electrodes in Li/S battery configuration. Sci. Rep. 2015, 5, 8763.

89

Cheng, X. -B.; Peng, H. -J.; Huang, J. -Q.; Zhu, L.; Yang, S. -H.; Liu, Y.; Zhang, H. -W.; Zhu, W. C.; Wei, F.; Zhang, Q. Three-dimensional aluminum foam/carbon nanotube scaffolds as long- and short-range electron pathways with improved sulfur loading for high energy density lithium-sulfur batteries. J. Power Sources 2014, 261, 264-270.

90

Fang, X.; Weng, W.; Ren, J.; Peng, H. S. A cable-shaped lithium sulfur battery. Adv. Mater. 2016, 28, 491-496.

91

Dörfler, S.; Hagen, M.; Althues, H.; Tübke, J.; Kaskel, S.; Hoffmann, M. J. High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium-sulfur batteries. Chem. Commun. 2012, 48, 4097-4099.

92

Sun, L.; Wang, D. T.; Luo, Y. F.; Wang, K.; Kong, W. B.; Wu, Y.; Zhang, L. N.; Jiang, K. L.; Li, Q. Q.; Zhang, Y. H. et al. Sulfur embedded in a mesoporous carbon nanotube network as a binder-free electrode for high-performance lithium-sulfur batteries. ACS Nano 2015, 10, 1300-1308.

93

Sun, L.; Kong, W. B.; Jiang, Y.; Wu, H. C.; Jiang, K. L.; Wang, J. P.; Fan, S. S. Super-aligned carbon nanotube/graphene hybrid materials as a framework for sulfur cathodes in high performance lithium sulfur batteries. J. Mater. Chem. A 2015, 3, 5305-5312.

94

Yuan, G. H.; Wang, G.; Wang, H.; Bai, J. T. A novel three-dimensional sulfur/graphene/carbon nanotube composite prepared by a hydrothermal co-assembling route as binder-free cathode for lithium-sulfur batteries. J. Nanopart. Res. 2015, 17, 36.

95

Peng, H. J.; Xu, W. T.; Zhu, L.; Wang, D. W.; Huang, J. Q.; Cheng, X. B.; Yuan, Z.; Wei, F.; Zhang, Q. 3D carbonaceous current collectors: The origin of enhanced cycling stability for high-sulfur-loading lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 6351-6358.

96

Yuan, Z.; Peng, H. J.; Huang, J. Q.; Liu, X. Y.; Wang, D. W.; Cheng, X. B.; Zhang, Q. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 6105-6112.

97

Peng, H. J.; Hou, T. Z.; Zhang, Q.; Huang, J. Q.; Cheng, X. B.; Guo, M. Q.; Yuan, Z.; He, L. Y.; Wei, F. Strongly coupled interfaces between a heterogeneous carbon host and a sulfur-containing guest for highly stable lithium-sulfur batteries: Mechanistic insight into capacity degradation. Adv. Mater. Interfaces 2014, 1, 1400227.

98

Hou, T. Z.; Chen, X.; Peng, H. J.; Huang, J. Q.; Li, B. Q.; Zhang, Q.; Li, B. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries. Small 2016, 12, 3283-3291.

99

Xu, G. Y.; Yuan, J. R.; Tao, X. Y.; Ding, B.; Dou, H.; Yan, X. H.; Xiao, Y.; Zhang, X. G. Absorption mechanism of carbon-nanotube paper-titanium dioxide as a multifunctional barrier material for lithium-sulfur batteries. Nano Res. 2015, 8, 3066-3074.

100

Liang, X.; Rangom, Y.; Kwok, C. Y.; Pang, Q.; Nazar, L. F. Interwoven mxene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 2017, 29, 1603040.

101

Zhou, X. Y.; Chen, F.; Yang, J. Core@shell sulfur@ polypyrrole nanoparticles sandwiched in graphene sheets as cathode for lithium-sulfur batteries. J. Energy Chem. 2015, 24, 448-455.

102

Cheng, X. B.; Huang, J. Q.; Peng, H. J.; Nie, J. Q.; Liu, X. Y.; Zhang, Q.; Wei, F. Polysulfide shuttle control: Towards a lithium-sulfur battery with superior capacity performance up to 1000 cycles by matching the sulfur/electrolyte loading. J. Power Sources 2014, 253, 263-268.

103

Hagen, M.; Hanselmann, D.; Ahlbrecht, K.; Maça, R.; Gerber, D.; Tubke, J. Lithium-sulfur cells: The gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater. 2015, 5, 1401986.

104

Zhou, G. M.; Paek, E.; Hwang, G. S.; Manthiram, A. High-performance lithium-sulfur batteries with a self-supported, 3D Li2S-doped graphene aerogel cathodes. Adv. Energy Mater. 2016, 6, 1501355.

105

Papandrea, B.; Xu, X.; Xu, Y. X.; Chen, C. Y.; Lin, Z. Y.; Wang, G. M.; Luo, Y. Z.; Liu, M.; Huang, Y.; Mai, L. Q. et al. Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium-sulfur battery. Nano Res. 2016, 9, 240-248.

106

Wang, Z. Y.; Dong, Y. F.; Li, H. J.; Zhao, Z. B.; Wu, H. B.; Hao, C.; Liu, S. H.; Qiu, J. S.; Lou, X. W. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 2014, 5, 5002.

107

Hou, Y. P.; Mao, H. Z.; Xu, L. Q. MIL-100(V) and MIL-100(V)/rGO with various valence states of vanadium ions as sulfur cathode hosts for lithium-sulfur batteries. Nano Res. 2017, 10, 344-353.

108

Peng, H. J.; Zhang, G.; Chen, X.; Zhang, Z. W.; Xu, W. T.; Huang, J. Q.; Zhang, Q. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 128, 13184-13189.

109

Bao, W. Z.; Su, D. W.; Zhang, W. X.; Guo, X.; Wang, G. X. 3D metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 8746-8756.

110

Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519-527.

111

Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. -M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

112

Liu, M. K.; Yang, Z. B.; Sun, H.; Lai, C.; Zhao, X. S.; Peng, H. S.; Liu, T. X. A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium-sulfur batteries. Nano Res. 2016, 9, 3735-3746.

113

Peng, H. J.; Wang, D. W.; Huang, J. Q.; Cheng, X. B.; Yuan, Z.; Wei, F.; Zhang, Q. Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium-sulfur batteries. Adv. Sci. 2016, 3, 1500268.

114

Chang, C. H.; Chung, S. H.; Manthiram, A. Effective stabilization of a high-loading sulfur cathode and a lithium-metal anode in Li-S batteries utilizing swcnt-modulated separators. Small 2016, 12, 174-179.

115

Zhuang, T. Z.; Huang, J. Q.; Peng, H. J.; He, L. Y.; Cheng, X. B.; Chen, C. M.; Zhang, Q. Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries. Small 2016, 12, 381-389.

116

Chung, S. H.; Manthiram, A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries. Adv. Mater. 2014, 26, 7352-7357.

117

Chung, S. H.; Manthiram, A. Nano-cellular carbon current collectors with stable cyclability for Li-S batteries. J. Mater. Chem. A 2013, 1, 9590-9596.

118

Elazari, R.; Salitra, G.; Garsuch, A.; Panchenko, A.; Aurbach, D. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv. Mater. 2011, 23, 5641-5644.

119

Lee, J. S.; Kim, W.; Jang, J.; Manthiram, A. Sulfur-embedded activated multichannel carbon nanofiber composites for long-life, high-rate lithium-sulfur batteries. Adv. Energy Mater. 2016, 6, 1601943.

120

Cao, Z. X.; Zhang, J.; Ding, Y. M.; Li, Y. L.; Shi, M. J.; Yue, H. Y.; Qiao, Y.; Yin, Y. H.; Yang, S. T. In situ synthesis of flexible elastic n-doped carbon foam as a carbon current collector and interlayer for high-performance lithium sulfur batteries. J. Mater. Chem. A 2016, 4, 8636-8644.

121

Wang, X. W.; Gao, T.; Han, F. D.; Ma, Z. H.; Zhang, Z.; Li, J.; Wang, C. S. Stabilizing high sulfur loading Li-S batteries by chemisorption of polysulfide on three-dimensional current collector. Nano Energy 2016, 30, 700-708.

122

He, N.; Zhong, L.; Xiao, M.; Wang, S. J.; Han, D. M.; Meng, Y. Z. Foldable and high sulfur loading 3D carbon electrode for high-performance Li-S battery application. Sci. Rep. 2016, 6, 33871.

123

Zhao, Q.; Hu, X. F.; Zhang, K.; Zhang, N.; Hu, Y. X.; Chen, J. Sulfur nanodots electrodeposited on Ni foam as high-performance cathode for Li-S batteries. Nano Lett. 2015, 15, 721-726.

124

Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li−S batteries. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 840-845.

125

Babu, G.; Masurkar, N.; Al Salem, H.; Arava, L. M. R. Transition metal dichalcogenide atomic layers for lithium polysulfides electrocatalysis. J. Am. Chem. Soc. 2016, 139, 171-178.

126

Cheng, X. -B.; Zhang, Q. Dendrite-free lithium metal anodes: Stable solid electrolyte interphases for high-efficiency batteries. J. Mater. Chem. A 2015, 3, 7207-7209.

127

Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419-2430.

128

Park, M. S.; Ma, S. B.; Lee, D. J.; Im, D.; Doo, S. -G.; Yamamoto, O. A highly reversible lithium metal anode. Sci. Rep. 2014, 4, 3815.

129

Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450-4456.

130

Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 2017, 27, 1605989.

131

Zhao, C. -Z.; Cheng, X. -B.; Zhang, R.; Peng, H. -J.; Huang, J. -Q.; Ran, R.; Huang, Z. -H.; Wei, F.; Zhang, Q. Li2S5-based ternary-salt electrolyte for robust lithium metal anode. Energy Storage Mater. 2016, 3, 77-84.

132

Kim, H.; Lee, J. T.; Yushin, G. High temperature stabilization of lithium-sulfur cells with carbon nanotube current collector. J. Power Sources 2013, 226, 256-265.

133

Wei, Y. J.; Tao, Y. Q.; Kong, Z. K.; Liu, L.; Wang, J. T.; Qiao, W. M.; Ling, L. C.; Long, D. H. Unique electrochemical behavior of heterocyclic selenium-sulfur cathode materials in ether-based electrolytes for rechargeable lithium batteries. Energy Storage Mater. 2016, 5, 171-179.

134

Fan, L.; Zhuang, H. L.; Zhang, K. H.; Cooper, V. R.; Li, Q.; Lu, Y. Y. Chloride-reinforced carbon nanofiber host as effective polysulfide traps in lithium-sulfur batteries. Adv. Sci. 2016, 3, 1600175.

135

Yuan, S. Y.; Guo, Z. Y.; Wang, L. N.; Hu, S.; Wang, Y. G.; Xia, Y. Y. Leaf-like graphene-oxide-wrapped sulfur for high-performance lithium-sulfur battery. Adv. Sci. 2015, 2, 1500071.

136

Zhang, M. D.; Yu, C.; Zhao, C. T.; Song, X. D.; Han, X. T.; Liu, S. H.; Hao, C.; Qiu, J. S. Cobalt-embedded nitrogen-doped hollow carbon nanorods for synergistically immobilizing the discharge products in lithium-sulfur battery. Energy Storage Mater. 2016, 5, 223-229.

137

Zhai, P. -Y.; Peng, H. -J.; Cheng, X. -B.; Zhu, L.; Huang, J. -Q.; Zhu, W. C.; Zhang, Q. Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium-sulfur batteries. Energy Storage Mater. 2017, 7, 56-63.

138

Zhang, D.; Zhou, Y.; Liu, C. H.; Fan, S. S. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery. Nanoscale 2016, 8, 11161-11167.

139

Jin, S.; Xin, S.; Wang, L. J.; Du, Z. Z.; Cao, L. N.; Chen, J. F.; Kong, X. H.; Gong, M.; Lu, J. L.; Zhu, Y. W. et al. Covalently connected carbon nanostructures for current collectors in both the cathode and anode of Li-S batteries. Adv. Mater. 2016, 28, 9094-9102.

140

Lee, H.; Song, J.; Kim, Y. -J.; Park, J. -K.; Kim, H. -T. Structural modulation of lithium metal-electrolyte interface with three-dimensional metallic interlayer for high-performance lithium metal batteries. Sci. Rep. 2016, 6, 30830.

141

Yun, Q. B.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 2016, 28, 6932-6939.

142

Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Wei, F.; Zhang, Q. Dendrite-free nanostructured anode: Entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries. Small 2014, 10, 4257-4263.

143

Sun, Y. M.; Zheng, G. Y.; Seh, Z. W.; Liu, N.; Wang, S.; Sun, J.; Lee, H. R.; Cui, Y. Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries. Chem 2016, 1, 287-297.

144

Kim, J. -S.; Kim, D. W.; Jung, H. T.; Choi, J. W. Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive. Chem. Mater. 2015, 27, 2780-2787.

145

Cheng, X. -B.; Peng, H. -J.; Huang, J. -Q.; Zhang, R.; Zhao, C. -Z.; Zhang, Q. Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium-sulfur batteries. ACS Nano 2015, 9, 6373-6382.

146

Li, W. Y.; Yao, H. B.; Yan, K.; Zheng, G. Y.; Liang, Z.; Chiang, Y. -M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 7, 7436.

147

Yan, C.; Cheng, X. -B.; Zhao, C. -Z.; Huang, J. -Q.; Yang, S. -T.; Zhang, Q. Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode. J. Power Sources 2016, 327, 212-220.

148

Mukherjee, R.; Thomas, A. V.; Datta, D.; Singh, E.; Li, J. W.; Eksik, O.; Shenoy, V. B.; Koratkar, N. Defect-induced plating of lithium metal within porous graphene networks. Nat. Commun. 2014, 5, 3710.

149

Cheng, X. -B.; Yan, C.; Huang, J. -Q.; Li, P.; Zhu, L.; Zhao, L. D.; Zhang, Y. Y.; Zhu, W. C.; Yang, S. -T.; Zhang, Q. The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection. Energy Storage Mater. 2017, 6, 18-25.

150

Lu, L. -L.; Ge, J.; Yang, J. -N.; Chen, S. -M.; Yao, H. -B.; Zhou, F.; Yu, S. -H. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 2016, 16, 4431-4437.

151

Duan, B. C.; Wang, W. K.; Zhao, H. L.; Wang, A. B.; Wang. M. J.; Yuan, K. G.; Yu, Z. B.; Yang, Y. S. Li-B alloy as anode material for lithium/sulfur battery. ECS Electrochem. Lett. 2013, 2, A47-A51.

152

Zhang, X. L.; Wang, W. K.; Wang, A. B.; Huang, Y. Q.; Yuan, K. G.; Yu, Z. B.; Qiu, J. Y.; Yang, Y. S. Improved cycle stability and high security of Li-B alloy anode for lithium-sulfur battery. J. Mater. Chem. A, 2014, 2, 11660-11665.

153

Zhang, C.; Lv, W.; Tao, Y.; Yang, Q. -H. Towards superior volumetric performance: Design and preparation of novel carbon materials for energy storage. Energy Environ. Sci. 2015, 8, 1390-1403.

154

Imtiaz, S.; Zhang, J.; Zafar, Z. A.; Ji, S. N.; Huang, T. Z.; Anderson, J. A.; Zhang, Z. L.; Huang, Y. H. Biomass-derived nanostructured porous carbons for lithium-sulfur batteries. Sci. China Mater. 2016, 59, 389-407.

155

Zhang, G.; Zhang, Z. W.; Peng, H. J.; Huang, J. Q.; Zhang, Q. A toolbox for lithium-sulfur battery research: Methods and protocols. Small Methods 2017, 1, 1700134.

156

Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

157

Peng, H. J.; Zhang, G.; Chen, X.; Zhang, Z. W.; Xu, W T.; Huang, J. Q.; Zhang, Q. Enhanced electrochemical kinetics on conductive polar mediators for lithium−sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 12990-12995.

158
Yu, H. J.; Li, H. W.; Yuan, S. Y.; Yang, Y. C.; Zheng, J. H.; Hu, J. H.; Yang, D.; Wang, Y. G.; Dong, A. G. Three-dimensionally ordered, ultrathin graphitic-carbon frameworks with cage-like mesoporosity for highly stable Li-S batteries. Nano Res., in press, DOI: 10.1007/s12274-017-1454-1.https://doi.org/10.1007/s12274-017-1454-1
159

Zhang, Y.; Liu, B. Y.; Hitz, E.; Luo, W.; Yao, Y. G.; Li, Y. J.; Dai, J. Q.; Chen, C. J.; Wang, Y. B.; Yang, C. P. et al. A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res. 2017, 10, 1356-1365.

160

Zhang, R.; Chen, X. -R.; Chen, X.; Zhang, X. -Q.; Cheng, X. -B.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2017, 56, 7764-7768.

161
Lin, D.; Liu, Y.; Pei, A.; Cui, Y. Nanoscale perspective: Materials design and understanding in lithium metal anode. Nano Res., in press, DOI: 10.1007/s12274-017-1596-1.https://doi.org/10.1007/s12274-017-1596-1
Nano Research
Pages 4027-4054
Cite this article:
Kong L, Peng H-J, Huang J-Q, et al. Review of nanostructured current collectors in lithium–sulfur batteries. Nano Research, 2017, 10(12): 4027-4054. https://doi.org/10.1007/s12274-017-1652-x

778

Views

96

Crossref

N/A

Web of Science

97

Scopus

14

CSCD

Altmetrics

Received: 23 March 2017
Revised: 22 April 2017
Accepted: 25 April 2017
Published: 04 July 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return