AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Metal-organic framework-derived porous shuttle-like vanadium oxides for sodium-ion battery application

Yangsheng Cai1Guozhao Fang1Jiang Zhou1,2( )Sainan Liu1Zhigao Luo1Anqiang Pan1,2( )Guozhong Cao3Shuquan Liang1,2( )
School of Materials Science and EngineeringCentral South UniversityChangsha410083China
Key Laboratory of Nonferrous Metal Materials Science and EngineeringMinistry of EducationCentral South UniversityChangsha410083China
Department of Materials and EngineeringUniversity of Washington, Seattle, WA, 98195-2120USA
Show Author Information

Graphical Abstract

Abstract

Vanadium oxides with a layered structure are promising candidates for both lithium-ion batteries and sodium-ion batteries (SIBs). The self-template approach, which involves a transformation from metal-organic frameworks (MOFs) into porous metal oxides, is a novel and effective way to achieve desirable electrochemical performance. In this study, porous shuttle-like vanadium oxides (i.e., V2O5, V2O3/C) were successfully prepared by using MIL-88B (Ⅴ) as precursors with a specific calcination process. As a proof-of-concept application, the asprepared porous shuttle-like V2O3/C was used as an anode material for SIBs. The porous shuttle-like V2O3/C, which had an inherent layered structure with metallic behavior, exhibited excellent electrochemical properties. Remarkable rate capacities of 417, 247, 202, 176, 164, and 149 mAh·g-1 were achieved at current densities of 50, 100, 200, 500, 1, 000, and 2, 000 mA·g-1, respectively. Under cycling at 2 A·g-1, the specific discharge capacity reached 181 mAh·g-1, with a low capacity fading rate of 0.032% per cycle after 1, 000 cycles. Density functional theory calculation results indicated that Na ions preferred to occupy the interlamination rather than the inside of each layer in the V2O3. Interestingly, the special layered structure with a skeleton of dumbbell-like V–V bonds and metallic behavior was maintained after the insertion of Na ions, which was beneficial for the cycle performance. We consider that the MOF precursor of MIL-88B (Ⅴ) can be used to synthesize other porous V-based materials for various applications.

Electronic Supplementary Material

Download File(s)
nr-11-1-449_ESM.pdf (2.8 MB)

References

1

Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977-980.

2

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.

3

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

4

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587-603.

5

Yoshino, A. The birth of the lithium-ion battery. Angew. Chem., Int. Ed. 2012, 51, 5798-5800.

6

Fang, G. Z.; Zhou, J.; Liang, C. W.; Pan, A. Q.; Zhang, C.; Tang, Y.; Tan, X. P.; Liu, J.; Liang, S. Q. MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications. Nano Energy 2016, 26, 57-65.

7

Sun, X. L.; Si, W. P.; Xi, L. X.; Liu, B.; Liu, X. J.; Yan, C. L.; Schmidt, O. G. In situ-formed, amorphous, oxygen-enabled germanium anode with robust cycle life for reversible lithium storage. ChemElectroChem 2015, 2, 737-742.

8

Sun, X. L.; Si, W. P.; Liu, X. H.; Deng, J. W.; Xi, L. X.; Liu, L. F.; Yan, C. L.; Schmidt, O. G. Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries. Nano Energy 2014, 9, 168-175.

9

Wang, J. Y.; Yang, N. L.; Tang, H. J.; Dong, Z. H.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H. J.; Tang, Z. Y.; Wang, D. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem., Int. Ed. 2013, 52, 6417-6420.

10

Ren, H.; Sun, J. J.; Yu, R. B.; Yang, M.; Gu, L.; Liu, P. R.; Zhao, H. J.; Kisailus, D.; Wang, D. Controllable synthesis of mesostructures from TiO2 hollow to porous nanospheres with superior rate performance for lithium ion batteries. Chem. Sci. 2016, 7, 793-798.

11

Du, J.; Qi, J.; Wang, D.; Tang, Z. Y. Facile synthesis of Au@TiO2 core-shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency. Energy Environ. Sci. 2012, 5, 6914-6918.

12

Qi, J.; Lai, X. Y.; Wang, J. Y.; Tang, H. J.; Ren, H.; Yang, Y.; Jin, Q.; Zhang, L. J.; Yu, R. B.; Ma, G. H. et al. Multi- shelled hollow micro-/nanostructures. Chem. Soc. Rev. 2015, 44, 6749-6773.

13

Xu, S. M.; Hessel, C. M.; Ren, H.; Yu, R. B.; Jin, Q.; Yang, M.; Zhao, H. J.; Wang, D. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632-637.

14

Xu G. Y.; Yuan, J. R.; Tao, X. Y.; Ding, B.; Dou, H.; Yan, X. H.; Xiao, Y.; Zhang, X. G. Absorption mechanism of carbon-nanotube paper-titanium dioxide as a multifunctional barrier material for lithium-sulfur batteries. Nano Res. 2015, 8, 3066-3074.

15

Dong, Y. F.; Li, S.; Zhao, K. N.; Han, C. H.; Chen, W.; Wang, B. L.; Wang, L.; Xu, B. A.; Wei, Q. L.; Zhang, L. et al. Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes. Energy Environ. Sci. 2015, 8, 1267-1275.

16

Ren, W. H.; Zheng, Z. P.; Xu, C.; Niu, C. J.; Wei, Q. L.; An, Q. Y.; Zhao, K. N.; Yan, M. Y.; Qin, M. S.; Mai, L. Q. Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 sanofiber setwork for high-rate sodium-ion full batteries. Nano Energy 2016, 25, 145-153.

17

Xu, Y. N.; Wei, Q. L.; Xu, C.; Li, Q. D.; An, Q. Y.; Zhang, P. F.; Sheng, J. Z.; Zhou, L.; Mai, L. Q. Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv. Energy Mater. 2016, 6, 1600389.

18

Zhang, Y.; Zhao, H. Y.; Du, Y. P. Symmetric full cells assembled by using self-supporting Na3V2(PO4)3 bipolar electrodes for superior sodium energy storage. J. Mater. Chem. A 2016, 4, 7155-7159.

19

Yuan, S.; Liu, Y. B.; Xu, D.; Ma, D. L.; Wang, S.; Yang, X. H.; Cao, Z. Y.; Zhang, X. B. Pure single-crystalline Na1.1V3O7.9 nanobelts as superior cathode materials for rechargeable sodium-ion batteries. Adv. Sci. 2015, 2, 1400018.

20

Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884-5901.

21

Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710-721.

22

Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X. H.; Ceder, G. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 2011, 4, 3680-3688.

23

Xu, X.; Yu, D. M.; Zhou, H.; Zhang, L. S.; Xiao, C. H.; Guo, C. W.; Guo, S. W.; Ding, S. J. MoS2 nanosheets grown on amorphous carbon nanotubes for enhanced sodium storage. J. Mater. Chem. A 2016, 4, 4375-4379.

24

Cheng, F. Y.; Chen, J. Transition metal vanadium oxides and vanadate materials for lithium batteries. J. Mater. Chem. 2011, 21, 9841-9848.

25

Wu, C. Z.; Xie, Y. Promising vanadium oxide and hydroxide nanostructures: from energy storage to energy saving. Energy Environ. Sci. 2010, 3, 1191-1206.

26

Chernova, N. A.; Roppolo, M.; Dillon, A. C.; Whittingham, M. Stanley. Layered vanadium and molybdenum oxides: batteries and electrochromics. J. Mater. Chemistry 2009, 19, 2526-2552.

27

Wang, Y.; Chao, G. Z. Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem. Mater. 2006, 18, 2787-2804.

28

Raju, V.; Rains, J.; Gates, C.; Luo, W.; Wang, X. F.; Stickle, W. F.; Stucky, G. D.; Ji, X. L. Superior cathode of sodium-ion batteries: Orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. Nano Lett. 2014, 14, 4119-4124.

29

Zhang, P. F.; Zhao, L. Z.; An, Q. Y.; Wei, Q. L.; Zhou, L.; Wei, X. J.; Sheng, J. Z.; Mai, L. Q. A high-rate V2O5 hollow microclew cathode for an all-vanadium-based lithium-ion full cell. Small 2016, 12, 1082-1090.

30

Su, D. W.; Wang, G. X. Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano 2013, 7, 11218-11226.

31

Xia, X. H.; Chao, D. L.; Zhang, Y. Q.; Zhan, J. Y.; Zhong, Y.; Wang, X. L.; Wang, Y. D.; Shen, Z. X.; Tu, J. P.; Fan, H. J. Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 2016, 12, 3048-3058.

32

Niu, C. J.; Huang, M.; Wang, P. Y.; Meng, J. S.; Liu, X.; Wang, X. P.; Zhao, K. N.; Yu, Y.; Wu, Y. Z.; Lin, C. et al. Carbon-supported and nanosheet-assembled vanadium oxide microspheres for stable lithium-ion battery anodes. Nano Res. 2015, 9, 128-138.

33

Jiang, L.; Qu, Y.; Ren, Z. Y.; Yu, P.; Zhao, D. D.; Zhou, W.; Wang, L.; Fu, H. G. In situ carbon-coated yolk-shell V2O3 microspheres for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 1595-1601.

34

Wang J. Y.; Tang, H. J.; Zhang, L. J.; Ren, H.; Yu, R. B.; Jin, Q.; Qi, J.; Mao, D.; Yang, M.; Wang, Y. et al. Multi- shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nat. Energy 2016, 1, 16050.

35

Chao, D. L.; Xia, X. H.; Liu, J. L.; Fan, Z. X.; Ng, C. F.; Lin, J. Y.; Zhang, H.; Shen, Z. X.; Fan, H. J. A V2O5/ conductive-polymer core/shell nanobelt array on three- dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 2014, 26, 5794-5800.

36

Zhai, T. Y.; Liu, H. M.; Li, H. Q.; Fang, X. S.; Liao, M. Y.; Li, L.; Zhou, H. S.; Koide, Y.; Bando, Y.; Golberg, D. Centimeter-long V2O5 nanowires: From synthesis to field- emission, electrochemical, electrical transport, and photoconductive properties. Adv. Mater. 2010, 22, 2547-2552.

37

Li, Y. W.; Yao, J. H.; Uchaker, E.; Yang, J. W.; Huang, Y. X.; Zhang, M.; Cao, G. Z. Leaf-like V2O5 nanosheets fabricated by a facile green approach as high energy cathode material for lithium-ion batteries. Adv. Energy Mater. 2013, 3, 1171-1175.

38

Wu, H. B.; Pan, A. Q.; Hng, H. H.; Lou, X. W. Template- assisted formation of rattle-type V2O5 hollow microspheres with enhanced lithium storage properties. Adv. Funct. Mater. 2013, 23, 5669-5674.

39

Pan, A. Q.; Wu, H. B.; Yu, L.; Lou, X. W. Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew. Chem., Int. Ed. 2013, 125, 2282-2286.

40

Parija, A.; Liang, Y. F.; Andrews, J. L.; De Jesus, L. R.; Prendergast, D.; Banerjee, S. Topochemically de-intercalated phases of V2O5 as cathode materials for multivalent intercalation batteries: A first-principles evaluation. Chem. Mater. 2016, 28, 5611-5620

41

Xu, H. T.; Chen, J. D.; Zhang, H. J.; Zhang, Y.; Li, W. X.; Wang, Y. Fabricating SiO2-coated V2O5 nanoflake arrays for high-performance lithium-ion batteries with enhanced cycling capability. J. Mater. Chem. A 2016, 4, 4098-4106.

42

An, Q. Y.; Zhang, P. F.; Wei, Q. L.; He, L.; Xiong, F. Y.; Sheng, J. Z.; Wang, Q. Q.; Mai, L. Q. Top-down fabrication of three-dimensional porous V2O5 hierarchical microplates with tunable porosity for improved lithium battery performance. J. Mater. Chem. A 2014, 2, 3297-3302.

43

Su, D. W.; Dou, S. X.; Wang, G. X. Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium-ion bbatteries. J. Mater. Chem. A 2014, 2, 11185-11194.

44

Mai, L. Q.; Dong, F.; Xu, X.; Luo, Y. Z.; An, Q. Y.; Zhao, Y. L.; Pan, J.; Yang, J. N. Cucumber-like V2O5/poly (3, 4- ethylenedioxythiophene) & MnO2 nanowires with enhanced electrochemical cyclability. Nano Lett. 2013, 13, 740-745.

45

Shi, Y.; Zhang, Z. J.; Wexler, D.; Chou, S. L.; Gao, J.; Abruña, H. D.; Li, H. J.; Liu, H. K.; Wu, Y. P.; Wang, J. Z. Facile synthesis of porous V2O3/C composites as lithium storage material with enhanced capacity and good rate capability. J. Power Sources 2015, 275, 392-398.

46

Jiang, H.; Jia, G. Q.; Hu, Y. J.; Cheng, Q. L.; Fu, Y.; Li, C. Z. Ultrafine V2O3 nanowire embedded in carbon hybrids with enhanced lithium storage capability. Ind. Eng. Chem. Res. 2015, 54, 2960-2965.

47

Li, H. Y.; Jiao, K.; Wang, L.; Wei, C.; Li, X. L.; Xie, B. Micelle anchored in situ synthesis of V2O3 nanoflakes@C composites for supercapacitors. J. Mater. Chem. A 2014, 2, 18806-18815.

48

Zhang, Y. F.; Fan, M. J.; Hu, L.; Wu, W. B.; Zhang, J. C.; Liu, X. H.; Zhong, Y. L.; Huang, C. Fabrication of V2O3/C core-shell structured composite and vc nanobelts by the thermal treatment of VO2/C composite. Appl. Surf. Sci. 2012, 258, 9650-9655.

49

Wang, Y.; Zhang, H. J.; Admar, A. S.; Luo, J. Z.; Wong, C. C.; Borgna, A.; Lin, J. Y. Improved cyclability of lithium-ion battery anode using encapsulated V2O3 nanostructures in well-graphitized carbon fiber. RSC Adv. 2012, 2, 5748-5753.

50

Sun, Y. F.; Jiang, S. S.; Bi, W. T.; Wu, C. Z.; Xie, Y. Highly ordered lamellar V2O3-based hybrid nanorods towards superior aqueous lithium-ion battery performance. J. Power Sources 2011, 196, 8644-8650.

51

Wu, C. Z.; Feng, F.; Xie, Y. Design of vanadium oxide structures with controllable electrical properties for energy applications. Chem. Soc. Rev. 2013, 42, 5157-5183.

52

Taylor, J. W.; Smith, T. J.; Andersen, K. H.; Capellmann, H.; Kremer, R. K.; Simon, A.; Schärpf, O.; Neumann, K. U.; Ziebeck, K. R. A. Spin-spin correlations in the insulating and metallic phases of the mott system V2O3. Eur. Phys. J. B 1999, 12, 199-207.

53

Xu, Y. N.; Chung, S. Y.; Bloking, J. T.; Chiang, Y. M.; Ching, W. Y. Electronic structure and electrical conductivity of undoped LiFePO4. Electrochem. Solid State Lett. 2004, 7, A131-A134.

54

Shi, S. Q.; Liu, L. J.; Ouyang, C. Y.; Wang, D. S.; Wang, Z. X.; Chen, L. Q.; Huang, X. J. Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations. Phys. Rev. B 2003, 68, 195108.

55

Xu, J.; Chen, G. Effects of doping on the electronic properties of LiFePO4: A first-principles investigation. Phys. B Condens. Matter 2010, 405, 803-807.

56

Zhou, F.; Kang, K.; Maxisch, T.; Ceder, G.; Morgan, D. The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid State Commun. 2004, 132, 181-186.

57

Zheng, C. M.; Zhang, X. M.; He, S.; Fu, Q.; Lei, D. M. Preparation and characterization of spherical V2O3 nanopowder. J. Solid State Chem. 2003, 170, 221-226.

58

Müller, C.; Nateprov, A. A.; Obermeier, G.; Klemm, M.; Tidecks, R.; Wixforth, A.; Horn S. Surface acoustic wave investigations of the metal-to-insulator transition of V2O3 thin films on lithium niobate. J. Appl. Phys. 2005, 98, 084111.

59

Liu, N.; Yao, Y.; Cha, J. J.; McDowell, M. T.; Han, Y.; Cui, Y. Functionalization of silicon nanowire surfaces with metal-organic frameworks. Nano Res. 2012, 5, 109-116.

60

Deng, H. X.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S. et al. Large-pore apertures in a series of metal-organic frameworks. Science 2012, 336, 1018-1023.

61

Hayashi, H.; Côté, A. P.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. Zeolite a imidazolate frameworks. Nat. Mater. 2007, 6, 501-506.

62

Lu, W. G.; Wei, Z. W.; Gu, Z. Y.; Liu, T. F.; Park, J.; Park, J.; Tian, J.; Zhang, M. W.; Zhang, Q.; Gentle Ⅲ, T. et al. Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 2014, 43, 5561-5593.

63

Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933-969.

64

Xu, G. Y.; Ding, B.; Shen, L. F.; Nie, P.; Han, J. P.; Zhang, X. G. Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium-sulfur battery. J. Mater. Chem. A 2013, 1, 4490-4496.

65

Zhang, L.; Wu, H. B.; Lou, X. W. Metal-organic- frameworks-derived general formation of hollow structures with high complexity. J. Am. Chem. Soc. 2013, 135, 10664-10672.

66

Yu, X. Y.; Yu, L.; Wu, H. B.; Lou, X. W. Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 5331-5335.

67

Guo, W. X.; Sun, W. W.; Wang, Y. Multilayer CuO@NiO hollow spheres: Microwave-assisted metal-organic-framework derivation and highly reversible structure-matched stepwise lithium storage. ACS Nano 2015, 9, 11462-11471.

68

Huang, G.; Zhang, F. F.; Du, X. C.; Qin, Y. L.; Yin, D. M.; Wang, L. M. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. Nano 2015, 9, 1592-1599.

69

Cao, X. H.; Zheng, B.; Shi, W. H.; Yang, J.; Fan, Z. X.; Luo, Z. M.; Rui, X. H.; Chen, B.; Yan, Q. Y.; Zhang, H. Reduced graphene oxide-wrapped MoO3 composites prepared by using metal-organic frameworks as precursor for all- solid-state flexible supercapacitors. Adv. Mater. 2015, 27, 4695-4701.

70

Zheng, J. M.; Tian, J.; Wu, D. X.; Gu, M.; Xu, W.; Wang, C. M.; Gao, F.; Engelhard, M. H.; Zhang, J. G.; Liu, J. et al. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett. 2014, 14, 2345-2352.

71

Wu, R. B.; Qian, X. K.; Rui, X. H.; Liu, H.; Yadian, B. L.; Zhou, K.; Wei, J.; Yan, Q. Y.; Feng, X. Q.; Long, Y. et al. Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 2014, 10, 1932-1938.

72

Zhang, L.; Wu, H. B.; Madhavi, S.; Hng, H. H.; Lou, X. W. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 2012, 134, 17388- 17391.

73

Wu, R. B.; Qian, X. K.; Yu, F.; Liu, H.; Zhou, K.; Wei, J.; Huang, Y. Z. MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials. J. Mater. Chem. A 2013, 1, 11126-11129.

74

Zhang, Y. Z.; Wang, Y.; Xie, Y. L.; Cheng, T.; Lai, W. Y.; Pang, H.; Huang, W. Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale 2014, 6, 14354-14359.

75

Ullah, S.; Khan, I. A.; Choucair, M.; Badshah, A.; Khan, I.; Nadeem, M. A. A novel Cr2O3-carbon composite as a high performance pseudo-capacitor electrode material. Electrochim. Acta 2015, 171, 142-149.

76

Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854-3859.

77

Zhang, Y. D.; Zhu, P. Y.; Huang, L. L.; Xie, J.; Zhang, S. C.; Cao, G. S.; Zhao, X. B. Few-layered SnS2 on few-layered reduced graphene oxide as Na-ion battery anode with ultralong cycle life and superior rate capability. Adv. Funct. Mater. 2015, 25, 481-489.

78

Lu, Y. Y.; Zhao, Q., Zhang, N.; Lei, K. X.; Li, F. J.; Chen, J. Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres. Adv. Funct. Mater. 2016, 26, 911-918.

79

Xu, D. F.; Chen, C. J.; Xie, J.; Zhang, B.; Miao, L.; Cai, J.; Huang, Y. H.; Zhang, L. N. A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1501929.

80

Carson, F.; Su, J.; Platero-Prats, A. E.; Wan, W.; Yun, Y. F.; Samain, L.; Zou, X. D. Framework isomerism in vanadium metal-organic frameworks: MIL-88B(Ⅴ) and MIL-101(Ⅴ). Cryst. Growth Des. 2013, 13, 5036-5044.

81

Jiang, Y.; Yang, Z. Z.; Li, W. H.; Zeng, L. C.; Pan, F. S.; Wang, M.; Wei, X.; Hu, G. T.; Gu, L.; Yu, Y. Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries. Adv. Energy Mater. 2015, 5, 1402104.

82

Li, Q. D.; Wei, Q. L.; Sheng, J. Z.; Yan, M. Y.; Zhou, L.; Luo, W.; Sun, R. M.; Mai, L. Q. Mesoporous Li3VO4/C submicron-ellipsoids supported on reduced graphene oxide as practical anode for high-power lithium-ion batteries. Adv. Sci. 2015, 2, 1500284.

83
Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Chastain, J.; King, R. C. Jr, Eds.; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1992.
84

Tang, W.; Peng, C. X.; Nai, C. T.; Su, J.; Liu, Y. P.; Reddy, M. V. V.; Lin, M.; Loh, K. P. Ultrahigh capacity due to multi-electron conversion reaction in reduced graphene oxide-wrapped MoO2 porous nanobelts. Small 2015, 11, 2446-2453.

85

Zhang, Y. F.; Fan, M. J.; Liu, X. H.; Huang, C.; Li, H. B. Beltlike V2O3@C core-shell-structured composite: design, preparation, characterization, phase transition, and improvement of electrochemical properties of V2O3. Eur. J. Inorg. Chem. 2012, 2012, 1650-1659.

86

Jiang, H.; Ren, D. Y.; Wang, H. F.; Hu, Y. J.; Guo, S. J.; Yuan, H. Y.; Hu, P. J.; Zhang, L.; Li, C. Z. 2D monolayer MoS2-carbon interoverlapped superstructure: Engineering ideal atomic interface for lithium ion storage. Adv. Mater. 2015, 27, 3687-3695.

87

Xie, X. Q.; Ao, Z. M.; Su, D. W.; Zhang, J. Q.; Wang, G. X. MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: The role of the two-dimensional heterointerface. Adv. Funct. Mater. 2015, 2, 1393-1403.

88

Zhang, Y. F.; Pan, A. Q.; Wang, Y. P.; Wei, W. F.; Su, Y. H.; Hu, J. M.; Cao, G. Z.; Liang, S. Q. Dodecahedron-shaped porous vanadium oxide and carbon composite for high-rate lithium ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 17303-17311.

89

Zhang, W.; Wu, Z. Y.; Jiang, H. L.; Yu, S. H. nanowire- directed templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 2014, 136, 14385-14388.

90

Tang, J.; Salunkhe, R. R.; Liu, J.; Torad, N. L.; Imura, M.; Furukawa, S.; Yamauchi, Y. Thermal conversion of core-shell metal-organic frameworks: A new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 2015, 137, 1572-1580.

91

Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010-5016.

92

Enjalbert, R.; Galy, J. A refinement of the structure of V2O5. Acta Crystallogr. C 1986, 42, 1467-1469.

93

Xiao, J.; Wang, X. J.; Yang, X. Q.; Xun, S. D.; Liu, G.; Koech, P. K.; Liu, J.; Lemmon, J. P. Electrochemically induced high capacity displacement reaction of PEO/MoS2/ graphene nanocomposites with lithium. Adv. Funct. Mater. 2011, 21, 2840-2846.

94

Li, D. D.; Zhang, L.; Chen, H. B.; Wang, J.; Ding, L. X.; Wang, S. Q.; Ashman, P. J.; Wang, H. H. Graphene-based nitrogen-doped carbon sandwich nanosheets: A new capacitive process controlled anode material for high-performance sodium-ion batteries. J. Mater. Chem. A 2016, 4, 8630-8635.

95

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

96

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671-6687.

97

Blöchl, P. E.; Parrinello, M. Adiabaticity in first-principles molecular dynamics. Phys. Rev. B 1992, 45, 9413-9416.

98

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

99

Methfessel, M.; Paxton, A. T. High-precision sampling for brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616-3621.

100

Monkhorst, H. J.; Pack, J. D. Special points for brillouin- zone integrations. Phys. Rev. B 1976, 13, 5188-5192.

101

Liao, Y. H.; Park, K. S.; Xiao, P. H.; Henkelman, G.; Li, W. S.; Goodenough, J. B. Sodium intercalation behavior of layered NaxNbS2 (0 ≤ x ≤ 1). Chem. Mater. 2013, 25, 1699-1705.

102

Hu, J. P.; Xu, B.; Yang, S. A.; Guan, S.; Ouyang, C. Y.; Yao, Y. G. 2D electrides as promising anode materials for Na-ion batteries from first-principles study. ACS Appl. Mater. Interfaces 2015, 7, 24016-24022.

103

Tang, W.; Sanville, E.; Henkelman, G. A grid-based bader analysis algorithm without lattice Bias. J. Phys. Condens. Matter 2009, 21, 084204.

Nano Research
Pages 449-463
Cite this article:
Cai Y, Fang G, Zhou J, et al. Metal-organic framework-derived porous shuttle-like vanadium oxides for sodium-ion battery application. Nano Research, 2018, 11(1): 449-463. https://doi.org/10.1007/s12274-017-1653-9

887

Views

115

Crossref

N/A

Web of Science

115

Scopus

1

CSCD

Altmetrics

Received: 07 November 2016
Revised: 25 April 2017
Accepted: 30 April 2017
Published: 14 June 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return