AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection

Koshonna Brown1Ted Thurn1,+Lun Xin1William Liu1,Remon Bazak1,Si Chen2Barry Lai2Stefan Vogt2Chris Jacobsen3Tatjana Paunesku1Gayle E. Woloschak1( )
Department of Radiation OncologyFeinberg School of MedicineNorthwestern UniversityChicagoIllinois60611USA
X-ray Science DivisionAdvanced Photon SourceArgonne National Laboratory9700 South Cass AvenueArgonneIllinois60439USA
Department of Physics & AstronomyWeinberg College of Arts and Sciences2145 Sheridan RoadEvanstonIllinois60208USA

+Present Address: U.S. Department of State, 2201 C Street, NW Washington, DC 20520, USA

Present Address: Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, USA

Present Address: Department of Otorhinolaryngology and Head & Neck Surgery, University of Alexandria Medical School, Azarita Medical Campus, Champlollion Street, Khartoum Square, Alexandria 21547, Egypt

Show Author Information

Graphical Abstract

Abstract

Titanium dioxide (TiO2) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO2 nanoparticles in cells and tissues ex vivo is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications. Herein, we describe two in situ posttreatment labeling approaches to stain TiO2 nanoparticles taken up by the cells. The first approach utilizes fluorescent biotin and fluorescent streptavidin to label the nanoparticles before and after cellular uptake; the second approach is based on the copper-catalyzed azide-alkyne cycloaddition, the so-called Click chemistry, for labeling and detection of azide-conjugated TiO2 nanoparticles with alkyneconjugated fluorescent dyes such as Alexa Fluor 488. To confirm that optical fluorescence signals of these nanoparticles match the distribution of the Ti element, we used synchrotron X-ray fluorescence microscopy (XFM) at the Advanced Photon Source at Argonne National Laboratory. Titanium-specific XFM showed excellent overlap with the location of optical fluorescence detected by confocal microscopy. Therefore, future experiments with TiO2 nanoparticles may safely rely on confocal microscopy after in situ nanoparticle labeling using approaches described here.

Electronic Supplementary Material

Download File(s)
nr-11-1-464_ESM.pdf (1.4 MB)

References

1

Dimitrijevic, N. M.; Saponjic, Z. V.; Rabatic, B. M.; Rajh, T. Assembly and charge transfer in hybrid TiO2 architectures using biotin-avidin as a connector. J. Am. Chem. Soc. 2005, 127, 1344-1345.

2

Liu, J. Q.; de la Garza, L.; Zhang, L. G.; Dimitrijevic, N. M.; Zuo, X. B.; Tiede, D. M.; Rajh, T. Photocatalytic probing of DNA sequence by using TiO2/dopamine-DNA triads. Chem. Phys. 2007, 339, 154-163.

3

Paunesku, T.; Rajh, T.; Wiederrecht, G.; Maser, J.; Vogt, S.; Stojićević, N.; Protić, M.; Lai, B.; Oryhon, J.; Thurnauer, M. et al. Biology of TiO2-oligonucleotide nanocomposites. Nat. Mater. 2003, 2, 343-346.

4

Rajh, T.; Chen, L. X.; Lukas, K.; Liu, T.; Thurnauer, M. C.; Tiede, D. M. Surface restructuring of nanoparticles: An efficient route for ligand-metal oxide crosstalk. J. Phys. Chem. B 2002, 106, 10543-10552.

5

Urdaneta, I.; Keller, A.; Atabek, O.; Palma, J. L.; Finkelstein-Shapiro, D.; Tarakeshwar, P.; Mujica, V.; Calatayud, M. Dopamine adsorption on TiO2 anatase surfaces. J. Phys. Chem. C 2014, 118, 20688-20693.

6

Vega-Arroyo, M.; LeBreton, P. R.; Rajh, T.; Zapol, P.; Curtiss, L. A. Density functional study of the TiO2-dopamine complex. Chem. Phys. Lett. 2005, 406, 306-311.

7

Endres, P. J.; Paunesku, T.; Vogt, S.; Meade, T. J.; Woloschak, G. E. DNA-TiO2 nanoconjugates labeled with magnetic resonance contrast agents. J. Am. Chem. Soc. 2007, 129, 15760-15761.

8

Thurn, K. T.; Paunesku, T.; Wu, A. G.; Brown, E. M.; Lai, B.; Vogt, S.; Maser, J.; Aslam, M.; Dravid, V.; Bergan, R. et al. Labeling TiO2 nanoparticles with dyes for optical fluorescence microscopy and determination of TiO2-DNA nanoconjugate stability. Small 2009, 5, 1318-1325.

9

Ye, L.; Pelton, R.; Brook, M. A. Biotinylation of TiO2 nanoparticles and their conjugation with streptavidin. Langmuir 2007, 23, 5630-5637.

10

Thurn, K. T.; Brown, E.; Wu, A. G.; Vogt, S.; Lai, B.; Maser, J.; Paunesku, T.; Woloschak, G. E. Nanoparticles for applications in cellular imaging. Nanoscale Res. Lett. 2007, 2, 430-441.

11

Wu, A. G.; Paunesku, T.; Zhang, Z. L.; Vogt, S.; Lai, B.; Maser, J.; Yaghmai, V.; Li, D. B.; Omary, R. A.; Woloschak, G. E. A multimodal nanocomposite for biomedical imaging. AIP Conf. Proc. 2011, 1365, 379.

12

Arora, H. C.; Jensen, M. P.; Yuan, Y.; Wu, A. G.; Vogt, S.; Paunesku, T.; Woloschak, G. E. Nanocarriers enhance Doxorubicin uptake in drug-resistant ovarian cancer cells. Cancer Res. 2012, 72, 769-778.

13

Bazak, R.; Ressl, J.; Raha, S.; Doty, C.; Liu, W.; Wanzer, B.; Salam, S. A.; Elwany, S.; Paunesku, T.; Woloschak, G. E. Cytotoxicity and DNA cleavage with core-shell nanocomposites functionalized by a KH domain DNA binding peptide. Nanoscale 2013, 5, 11394-11399.

14

Brown, E. M. B.; Paunesku, T.; Wu, A. G.; Thurn, K. T.; Haley, B.; Clark, J.; Priester, T.; Woloschak, G. E. Methods for assessing DNA hybridization of peptide nucleic acidtitanium dioxide nanoconjugates. Anal. Biochem. 2008, 383, 226-235.

15

Kurepa, J.; Paunesku, T.; Vogt, S.; Arora, H.; Rabatic, B. M.; Lu, J. J.; Wanzer, M. B.; Woloschak, G. E.; Smalle, J. A. Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett. 2010, 10, 2296-2302.

16

Paunesku, T.; Ke, T. Y.; Dharmakumar, R.; Mascheri, N.; Wu, A. G.; Lai, B.; Vogt, S.; Maser, J.; Thurn, K.; Szolc-Kowalska, B. et al. Gadolinium-conjugated TiO2-DNA oligonucleotide nanoconjugates show prolonged intracellular retention period and T1-weighted contrast enhancement in magnetic resonance images. Nanomedicine 2008, 4, 201-207.

17

Paunesku, T.; Vogt, S.; Lai, B.; Maser, J.; Stojićević, N.; Thurn, K. T.; Osipo, C.; Liu, H.; Legnini, D.; Wang, Z. et al. Intracellular distribution of TiO2-DNA oligonucleotide nanoconjugates directed to nucleolus and mitochondria indicates sequence specificity. Nano Lett. 2007, 7, 596-601.

18
Rajh, T.; Dimitrijevic, N. M.; Rozhkova, E. A. Titanium dioxide nanoparticles in advanced imaging and nanotherapeutics. In Methods and Protocols. Hurst, S. J., Ed; Humana Press: Humana, 2011; pp 63-75.https://doi.org/10.1007/978-1-61779-052-2_5
19

Thurn, K. T.; Arora, H.; Paunesku, T.; Wu, A. G.; Brown, E. M. B.; Doty, C.; Kremer, J.; Woloschak, G. Endocytosis of titanium dioxide nanoparticles in prostate cancer PC-3M cells. Nanomedicine 2011, 7, 123-130.

20

Yuan, Y.; Chen, S.; Paunesku, T.; Gleber, S. C.; Liu, W. C.; Doty, C. B.; Mak, R.; Deng, J. J.; Jin, Q. L.; Lai, B. et al. Epidermal growth factor receptor targeted nuclear delivery and high-resolution whole cell X-ray imaging of Fe3O4@TiO2 nanoparticles in cancer cells. ACS Nano 2013, 7, 10502-10517.

21

Kotsokechagia, T.; Zaki, N. M.; Syres, K.; de Leonardis, P.; Thomas, A.; Cellesi, F.; Tirelli, N. PEGylation of nanosubstrates (titania) with multifunctional reagents: At the crossroads between nanoparticles and nanocomposites. Langmuir 2012, 28, 11490-11501.

22

Zhang, A. P.; Sun, Y. P. Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells. World J. Gastroenterol. 2004, 10, 3191-3193.

23

Zhang, L.; Dong, S.; Zhu, L. Fluorescent dyes of the esculetin and alizarin families respond to zinc ions ratiometrically. Chem. Commun. 2007, 19, 1891-1893.

24

Zhang, X.; Wang, F.; Liu, B. W.; Kelly, E. Y.; Servos, M. R.; Liu, J. W. Adsorption of DNA oligonucleotides by titanium dioxide nanoparticles. Langmuir 2014, 30, 839-845.

25

Paunesku, T.; Vogt, S.; Maser, J.; Lai, B.; Woloschak, G. X-ray fluorescence microprobe imaging in biology and medicine. J. Cell. Biochem. 2006, 99, 1489-1502.

26

Abbas, Z.; Holmberg, J. P.; Hellström, A. K.; Hagström, M.; Bergenholtz, J.; Hassellöv, M.; Ahlberg, E. Synthesis, characterization and particle size distribution of TiO2 colloidal nanoparticles. Colloid. Surf. A-Physicochem. Eng. Aspects 2011, 384, 254-261.

27

Vogt, S. MAPS: A set of software tools for analysis and visualization of 3D X-ray fluorescence data sets. J. Phys. Ⅳ 2003, 104, 635-638.

28

Chen, S.; Deng, J.; Yuan, Y.; Flachenecker, C.; Mak, R.; Hornberger, B.; Jin, Q.; Shu, D.; Lai, B.; Maser, J. et al. The bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities. J. Synchrotron Radiat. 2014, 21, 66-75.

29

Corezzi, S.; Urbanelli, L.; Cloetens, P.; Emiliani, C.; Helfen, L.; Bohic, S.; Elisei, F.; Fioretto, D. Synchrotron-based X-ray fluorescence imaging of human cells labeled with CdSe quantum dots. Anal. Biochem. 2009, 388, 33-39.

30

Russell-Jones, G.; McTavish, K.; McEwan, J.; Rice, J.; Nowotnik, D. Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumours. J. Inorg. Biochem. 2004, 98, 1625-1633.

31

Vadlapudi, A. D.; Vadlapatla, R. K.; Mitra, A. K. Sodium dependent multivitamin transporter (SMVT): A potential target for drug delivery. Curr. Drug Targets 2012, 13, 994-1003.

32

Townsend, S. A.; Evrony, G. D.; Gu, F. X.; Schulz, M. P.; Brown, R. H.; Langer, R. Tetanus toxin C fragment-conjugated nanoparticles for targeted drug delivery to neurons. Biomaterials 2007, 28, 5176-5184.

33

Kobayashi, H.; Sakahara, H.; Endo, K.; Hosono, M.; Yao, Z. S.; Toyama, S.; Konishi, J. Comparison of the chase effects of avidin, streptavidin, neutravidin, and avidin-ferritin on a radiolabeled biotinylated anti-tumor monoclonal antibody. Jpn. J. Cancer Res. 1995, 86, 310-314.

34

Amblard, F.; Cho, J. H.; Schinazi, R. F. Cu(Ⅰ)-catalyzed huisgen azide−alkyne 1, 3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem. Rev. 2009, 109, 4207-4220.

35

Meldal, M.; Tornøe, C. W. Cu-catalyzed azide−alkyne cycloaddition. Chem. Rev. 2008, 108, 2952-3015.

36

Cardiel, A. C.; Benson, M. C.; Bishop, L. M.; Louis, K. M.; Yeager, J. C.; Tan, Y. Z.; Hamers, R. J. Chemically directed assembly of photoactive metal oxide nanoparticle heterojunctions via the copper-catalyzed azide-alkyne cycloaddition ※Click§ reaction. ACS Nano 2012, 6, 310-318.

37

Tao, P.; Li, Y.; Rungta, A.; Viswanath, A.; Gao, J. N.; Benicewicz, B. C.; Siegel, R. W.; Schadler, L. S. TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 2011, 21, 18623-18629.

38

Upadhyay, A. P.; Behara, D. K.; Sharma, G. P.; Gyanprakash, M.; Pala, R. G. S.; Sivakumar, S. Fabricating appropriate band-edge-staggered heterosemiconductors with optically activated au nanoparticles via click chemistry for photoelectrochemical water splitting. ACS Sustainable Chem. Eng. 2016, 4, 4511-4520.

39

Yadav, S. K.; Madeshwaran, S. R.; Cho, J. W. Synthesis of a hybrid assembly composed of titanium dioxide nanoparticles and thin multi-walled carbon nanotubes using "Click chemistry". J. Colloid Interface Sci. 2011, 358, 471-476.

40

Wiederschain, G. Y. The molecular probes handbook: A guide to fluorescent probes and labeling technologies. Biochemistry Moscow 2011, 76, 1276.

41

Dieterich, D. C.; Link, A. J.; Graumann, J.; Tirrell, D. A.; Schuman, E. M. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 9482-9487.

42

Clark, P. M.; Dweck, J. F.; Mason, D. E.; Hart, C. R.; Buck, S. B.; Peters, E. C.; Agnew, B. J.; Hsieh-Wilson, L. C. Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. J. Am. Chem. Soc. 2008, 130, 11576-11577.

43

Salic, A.; Mitchison, T. J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 2415-2420.

44

Malalasekera, A. P.; Wang, H. W.; Samarakoon, T. N.; Udukala, D. N.; Yapa, A. S.; Ortega, R.; Shrestha, T. B.; Alshetaiwi, H.; McLaurin, E. J.; Troyer, D. L. et al. A nanobiosensor for the detection of arginase activity. Nanomedicine 2016, 13, 383-390.

45

Park, J.; Kadasala, N. R.; Abouelmagd, S. A.; Castanares, M. A.; Collins, D. S.; Wei, A.; Yeo, Y. Polymer-iron oxide composite nanoparticles for EPR-independent drug delivery. Biomaterials 2016, 101, 285-295.

Nano Research
Pages 464-476
Cite this article:
Brown K, Thurn T, Xin L, et al. Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection. Nano Research, 2018, 11(1): 464-476. https://doi.org/10.1007/s12274-017-1654-8

728

Views

33

Crossref

N/A

Web of Science

30

Scopus

0

CSCD

Altmetrics

Received: 30 December 2016
Revised: 27 April 2017
Accepted: 29 April 2017
Published: 19 July 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return