AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced sulfide chemisorption by conductive Al-doped ZnO decorated carbon nanoflakes for advanced Li-S batteries

Yangbo Kong§Jianmin Luo§Chengbin JinHuadong YuanOuwei ShengLiyuan ZhangCong FangWenkui ZhangHui HuangYang XiaChu LiangJun ZhangYongping GanXinyong Tao( )
College of Materials Science and EngineeringZhejiang University of TechnologyHangzhou310014China

§Yangbo Kong and Jianmin Luo contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Lithium-sulfur batteries have attracted significant attention recently due to their high theoretical capacity, energy density and cost effectiveness. However, sulfur cathodes suffer from issues such as shuttle effects, uncontrollable deposition of lithium sulfides species, and volume expansion of sulfur, which result in rapid capacity fading and low Coulombic efficiency. In recent years, metal-oxide nanostructures have been widely used in Li-S batteries, owing to their effective inhibition of the shuttle effect and controlled deposition of lithium sulfide. However, the nonconductive metal-oxides used in Li-S batteries suffer from extra diffusion process, which slows down the electrochemical reaction kinetics. Herein, we report the synthesis of carbon nanoflakes decorated with conductive aluminium-doped zinc oxide (AZO@C) nanoparticles, through a facile biotemplating method using kapok fibers as both the template and carbon source. A sulfur cathode based on the AZO@C nanocomposites shows better electrochemical performance than those of cathodes based on ZnO and Al2O3 with poor conductivity, with a stable capacity of 927 mAh·g-1 at 0.1C (1C = 1, 675 mA·g-1) after 100 cycles. A reversible capacity of 544 mAh·g-1 after 300 cycles was obtained even after increasing the current density to 0.5C, with a 0.039% capacity decay per cycle under a sulfur loading of 3.3 mg·cm-2. Moreover, a capacity of 466 mAh·g-1 after 100 cycles at 0.5C could still be obtained when the sulfur loading was increased to 6.96 mg·cm-2. The excellent electrochemical performance of the AZO@C/S composite can be attributed to its high conductivity of the polar AZO host, which suppresses the shuttle effect while simultaneously improving the redox kinetics in the reciprocal transformation of lithium sulfide species.

Electronic Supplementary Material

Download File(s)
nr-11-1-477_ESM.pdf (714.4 KB)

References

1

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19-29.

2

Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium-sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980-2006.

3

Seh, Z. W.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.

4

Mikhaylik, Y. V.; Akridge, J. R. Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 2004, 151, A1969-A1976.

5

Xu, R.; Lu, J.; Amine, K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 2015, 5, 1500408.

6

Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605-5634.

7

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751-11787.

8

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500-506.

9

Tao, X. Y.; Zhang, J. T.; Xia, Y.; Huang, H.; Du, J.; Xiao, H.; Zhang, W. K.; Gan, Y. P. Bio-inspired fabrication of carbon nanotiles for high performance cathode of Li-S batteries. J. Mater. Chem. A 2014, 2, 2290-2296.

10

Tao, X. Y.; Chen, X. R.; Xia, Y.; Huang, H.; Gan, Y. P.; Wu, R.; Chen, F.; Zhang, W. K. Highly mesoporous carbon foams synthesized by a facile, cost-effective and template- free Pechini method for advanced lithium-sulfur batteries. J. Mater. Chem. A 2013, 1, 3295-3301.

11

Jin, C. B.; Zhang, W. K.; Zhuang, Z. Z.; Wang, J. G.; Huang, H.; Gan, Y. P.; Xia, Y.; Liang, C.; Zhang., J.; Tao, X. Y. Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 632-640.

12

Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries. Nat. Commun. 2014, 5, 3410.

13

Zhang, K.; Zhao, Q.; Tao, Z. L.; Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 2013, 6, 38-46.

14

Xiao, Z. B.; Yang, Z.; Wang, L.; Nie, H. G.; Zhong, M. E.; Lai, Q. Q.; Xu, X. J.; Zhang, L. J.; Huang, S. M. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. Adv. Mater. 2015, 27, 2891-2898.

15

Wu, F.; Li, J.; Su, Y. F.; Wang, J.; Yang, W.; Li, N.; Chen, L.; Chen, S.; Chen, R. J.; Bao, L. Y. Layer-by-layer assembled architecture of polyelectrolyte multilayers and graphene sheets on hollow carbon spheres/sulfur composite for high-performance lithium-sulfur batteries. Nano Lett. 2016, 16, 5488-5494.

16

Xu, N.; Qian, T.; Liu, X. J.; Liu, J.; Chen, Y.; Yan, C. L. Greatly suppressed shuttle effect for improved lithium sulfur battery performance through short chain intermediates. Nano Lett. 2017, 17, 538-543.

17

Wang, Z. Y.; Dong, Y. F.; Li, H. J.; Zhao, Z. B.; Wu, H. B.; Hao, C.; Liu, S. H.; Qiu, J. S.; Lou, X. W. Enhancing lithium- sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 2014, 5, 5002.

18

Li, W. Y.; Liang, Z.; Lu, Z. D.; Yao, H. B.; Seh, Z. W.; Yan, K.; Zheng, G. Y.; Cui, Y. A sulfur cathode with pomegranate-like cluster structure. Adv. Energy Mater. 2015, 5, 1500211.

19

Chen, H. W.; Wang, C. H.; Dai, Y. F.; Qiu, S. Q.; Yang, J. L.; Lu, W.; Chen, L. W. Rational design of cathode structure for high rate performance lithium-sulfur batteries. Nano Lett. 2015, 15, 5443-5448.

20

Xin, S.; Gu, L.; Zhao, N. H.; Yin, Y. X.; Zhou, L. J.; Guo, Y. G.; Wan, L. J. Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 2012, 134, 18510-18513.

21

Lin, C; Niu, C. J.; Xu, X.; Li, K.; Cai, Z. Y.; Zhang, Y. L.; Wang, X. P.; Qu, L. B.; Xu, Y. X.; Mai, L. Q. A facile synthesis of three dimensional graphene sponge composited with sulfur nanoparticles for flexible Li-S cathodes. Phys. Chem. Chem. Phys. 2016, 18, 22146-22153.

22

Papandrea, B; Xu, X.; Xu, Y. X.; Chen, C. Y.; Lin, Z. Y.; Wang, G. M.; Luo, Y. Z.; Liu, M.; Huang, Y.; Mai, L. Q. et al. Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium-sulfur battery. Nano Res. 2016, 9, 240-248.

23

Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. W.; Wang, S. G.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. A graphene- pure-sulfur sandwich structure for ultrafast, long-life lithium- sulfur batteries. Adv. Mater. 2014, 26, 625-631.

24

Li, W.; Zheng, G.; Yang, Y.; Seh, Z. W.; Liu, N.; Cui, Y. High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 7148-7153.

25

Li, W. Y.; Zhang, Q. F.; Zheng, G. Y.; Seh, Z. W.; Yao, H. B.; Cui, Y. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett. 2013, 13, 5534-5540.

26

Kim, H.; Lee, J.; Ahn, H.; Kim, O.; Park, M. J. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries. Nat. Commun. 2015, 6, 7278.

27

Wei, S. Y.; Ma, L.; Hendrickson, K. E.; Tu, Z. Y.; Archer, L. A. Metal-sulfur battery cathodes based on PAN sulfur composites. J. Am. Chem. Soc. 2015, 137, 12143-12152.

28

Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

29

Tao, X. Y.; Wang, J. G.; Liu, C.; Wang, H. T.; Yao, H. B.; Zheng, G. Y.; Seh, Z. W.; Cai, Q. X.; Li, W. Y.; Zhou, G. M. et al. Balancing surface adsorption and diffusion of lithium- polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 2016, 7, 11203.

30

Tao, X. Y.; Wang, J. G.; Ying, Z. G.; Cai, Q. X.; Zheng, G. Y.; Gan, Y. P.; Huang, H.; Xia, Y.; Liang, C.; Zhang, W. K. et al. Strong sulfur binding with conducting Magnéli-phase TinO2n−1 nanomaterials for improving lithium-sulfur batteries. Nano Lett. 2014, 14, 5288-5294.

31

Li, Z.; Zhang, J. T.; Guan, B. Y.; Wang, D.; Liu, L. M.; Lou, X. W. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries. Nat. Commun. 2016, 7, 13065.

32

Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L. F. Surface- enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 2014, 5, 4759.

33

Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682.

34

Zhou, G. M.; Paek, E.; Hwang, G. S.; Manthiram, A. Long- life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 2015, 6, 7760.

35

Rehman, S.; Guo, S. J.; Hou, Y. L. Rational design of Si/SiO2@hierarchical porous carbon spheres as efficient polysulfide reservoirs for high-performance Li-S battery. Adv. Mater. 2016, 28, 3167-3172.

36

Zhang, J.; Shi, Y.; Ding, Y.; Zhang, W. K.; Yu, G. H. In situ reactive synthesis of polypyrrole-MnO2 coaxial nanotubes as sulfur hosts for high-performance lithium-sulfur battery. Nano Lett. 2016, 16, 7276-7281.

37

Seh, Z. W.; Yu, J. H.; Li, W. Y.; Hsu, P. C.; Wang, H. T.; Sun, Y. M.; Yao, H. B.; Zhang, Q. F.; Cui, Y. Two- dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nat. Commun. 2014, 5, 5017.

38

Li, Z.; Zhang, J. T.; Lou, X. W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 12886-12890.

39

Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519-527.

40

Tao, X. Y.; Chen, F.; Xia, Y.; Huang, H.; Gan, Y. P.; Chen, X. R.; Zhang, W. K. Decoration of sulfur with porous metal nanostructures: An alternative strategy for improving the cyclability of sulfur cathode materials for advanced lithium- sulfur batteries. Chem. Commun. 2013, 49, 4513-4515.

41

Yao, H. B.; Zheng, G. Y.; Hsu, P. C.; Kong, D. S.; Cha, J. J.; Li, W. Y.; Seh, Z. W.; McDowell, M. T.; Yan, K.; Liang, Z. et al. Improving lithium-sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nat. Commun. 2014, 5, 3943.

42

Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644-2647.

43

Su, Y. S.; Manthiram, A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat. Commun. 2012, 3, 1166.

44

Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522-18525.

45

Guo, J. C.; Xu, Y. H.; Wang, C. S. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett. 2011, 11, 4288-4294.

46

Zheng, G. Y.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011, 11, 4462-4467.

47

Elazari, R.; Salitra, G.; Garsuch, A.; Panchenko, A.; Aurbach, D. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv. Mater. 2011, 23, 5641-5644.

48

Hwang, T. H.; Jung, D. S.; Kim, J. S.; Kim, B. G.; Choi, J. W. One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature. Nano Lett. 2013, 13, 4532-4538.

49

Liu, M. N.; Ye, F. M.; Li, W. F.; Li, H. F.; Zhang, Y. G. Chemical routes toward long-lasting lithium/sulfur cells. Nano Res. 2016, 9, 94-116.

50

Peng, H. J.; Zhang, Q. Designing host materials for sulfur cathodes: From physical confinement to surface chemistry. Angew. Chem., Int. Ed. 2015, 54, 11018-11020.

51

Peng, H. J.; Zhang, G.; Chen, X.; Zhang, Z. W.; Xu, W. T.; Huang, J. Q.; Zhang, Q. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 12990-12995.

52

Cao, X. H.; Zheng, B.; Rui, X. H.; Shi, W. H.; Yan, Q. Y.; Zhang, H. Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. Angew. Chem., Int. Ed. 2014, 53, 1404-1409.

53

Kim, C.; Kim, J. W.; Kim, H.; Kim, D. H.; Choi, C.; Jung, Y. S.; Park, J. Graphene oxide assisted synthesis of self- assembled zinc oxide for lithium-ion battery anode. Chem. Mater. 2016, 28, 8498-8503.

54

Zhang, G. H.; Hou, S. C.; Zhang, H.; Zeng, W.; Yan, F. L.; Li, C. C.; Duan, H. G. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv. Mater. 2015, 27, 2400-2405.

55

Ahmad, M.; Shi, Y. Y.; Nisar, A.; Sun, H. Y.; Shen, W. C.; Wei, M.; Zhu, J. Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J. Mater. Chem. 2011, 21, 7723-7729.

56

Yang, S. J.; Nam, S.; Kim, T.; Im, J. H.; Jung, H.; Kang, J. H.; Wi, S. G.; Park, B.; Park, C. R. Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework. J. Am. Chem. Soc. 2013, 135, 7394-7397.

57

Hu, G. R.; Zhang, M. F.; Wu, L. L.; Peng, Z. D.; Du, K.; Cao, Y. B. High-conductive AZO nanoparticles decorated Ni-rich cathode material with enhanced electrochemical performance. ACS Appl. Mater. Interfaces 2016, 8, 33546- 33552.

58

Liu, H. Y.; Avrutin, V.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H. Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices Microstruct. 2010, 48, 458-484.

59

Zhang, Y. L.; Yang, Y.; Zhao, J. H.; Tan, R. Q.; Wang, W. Y.; Cui, P.; Song, W. J. Optical and electrical properties of aluminium-doped zinc oxide nanoparticles. J. Mater. Sci. 2011, 46, 774-780.

60

Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018-3032.

61

Hu, G. J.; Xu, C.; Sun, Z. H.; Wang, S. G.; Cheng, H. M.; Li, F.; Ren, W. C. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries. Adv. Mater. 2016, 28, 1603-1609.

62

Fang, R. P.; Zhao, S. Y.; Pei, S. F.; Qian, X. T.; Hou, P. X.; Cheng, H. M.; Liu, C.; Li, F. Toward more reliable lithium- sulfur batteries: An all-graphene cathode structure. ACS Nano 2016, 10, 8676-8682.

63

Pang, Q.; Nazar, L. F. Long-life and high-areal-capacity Li-S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption. ACS Nano 2016, 10, 4111-4118.

64

Gao, H. Y.; Jiao, L. F.; Peng, W. X.; Liu, G.; Yang, J. Q.; Zhao, Q. Q.; Qi, Z.; Si, Y. C.; Wang, Y. J.; Yuan, H. T. Enhanced electrochemical performance of LiFePO4/C via Mo-doping at Fe site. Electrochim. Acta 2011, 56, 9961-9967.

65

Smart, R. S. C.; Skinner, W. M.; Gerson, A. R. XPS of sulphide mineral surfaces: Metal-deficient, polysulphides, defects and elemental sulphur. Surf. Interface Anal. 1999, 28, 101-105.

66

Peng, H. J.; Zhang, Z. W.; Huang, J. Q.; Zhang, G.; Xie, J.; Xu, W. T.; Shi, J. L.; Chen, X.; Cheng, X. B.; Zhang, Q. A cooperative interface for highly efficient lithium-sulfur batteries. Adv. Mater. 2016, 28, 9551-9558.

Nano Research
Pages 477-489
Cite this article:
Kong Y, Luo J, Jin C, et al. Enhanced sulfide chemisorption by conductive Al-doped ZnO decorated carbon nanoflakes for advanced Li-S batteries. Nano Research, 2018, 11(1): 477-489. https://doi.org/10.1007/s12274-017-1655-7

668

Views

38

Crossref

N/A

Web of Science

38

Scopus

0

CSCD

Altmetrics

Received: 13 February 2017
Revised: 25 April 2017
Accepted: 30 April 2017
Published: 19 July 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return