AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-performance aqueous symmetric sodium-ion battery using NASICON-structured Na2VTi(PO4)3

Hongbo Wang1Tianran Zhang2Chao Chen3Min Ling4Zhan Lin1,3( )Shanqing Zhang4Feng Pan5Chengdu Liang1
Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture TechnologyCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
Department of Mechanical EngineeringNational University of SingaporeSingapore117576Singapore
College of Light Industry and Chemical EngineeringGuangdong University of TechnologyGuangzhou510006China
Centre for Clean Environment and EnergyEnvironmental Futures Research Institute and Griffith School of EnvironmentGold Coast CampusGriffith UniversityQLD4222Australia
School of Advanced MaterialsPeking UniversityShenzhen Graduate SchoolShenzhen518055China
Show Author Information

Graphical Abstract

Abstract

A high-safety and low-cost route is important in the development of sodium-ion batteries, especially for large-scale stationary battery systems. An aqueous sodium-ion battery is demonstrated using a single NASICON-structured Na2VTi(PO4)3 material with the redox couples of V4+/V3+ and Ti4+/Ti3+ working on the cathode and anode, respectively. The symmetric full cell fabricated based on the bi-functional electrode material exhibits a well-defined voltage plateau at ~1.2 V and an impressive cycling stability with capacity retention of 70% exceeding 1, 000 cycles at 10C (1C = 62 mA·g-1). This study provides a feasible strategy for obtaining high-safety and low-cost rechargeable batteries using a single active material in aqueous media.

Electronic Supplementary Material

Download File(s)
nr-11-1-490_ESM.pdf (1.4 MB)

References

1

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19-29.

2

Lu, J.; Chen, Z. H.; Ma, Z. F.; Fan, F.; Curtiss, L. A.; Amine, K. The role of nanotechnology in the development of battery materials for electric vehicles. Nat. Nanotechnol. 2016, 11, 1031-1038.

3

Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710-721.

4

Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431-3448.

5

Noguchi, Y.; Kobayashi, E.; Plashnitsa, L. S.; Okada, S.; Yamaki, J. I. Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds. Electrochim. Acta 2013, 101, 59-65.

6

Wang, S. W.; Wang, L. J.; Zhu, Z. Q.; Hu, Z.; Zhao, Q.; Chen, J. All organic sodium-ion batteries with Na4C8H2O6. Angew. Chem., Int. Ed. 2014, 53, 5892-5896.

7

Shanmugam, R.; Lai, W. Na2/3Ni1/3Ti2/3O2: "Bi-functional" electrode materials for Na-ion batteries. ECS Electrochem. Lett. 2014, 3, A23-A25.

8

Zhang, L.; Dou, S. X.; Liu, H. K; Huang, Y. H.; Hu, X. L. Symmetric electrodes for electrochemical energy-storage devices. Adv. Sci. 2016, 3, 1600115.

9

Wang, Y. S.; Xiao, R. J.; Hu, Y. S.; Avdeev, M.; Chen, L. Q. P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat. Commun. 2015, 6, 6954.

10

Guo, S. H.; Yu, H. J.; Liu, P.; Ren, Y.; Zhang, T.; Chen, M. W.; Ishida, M.; Zhou, H. S. High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2. Energy Environ. Sci. 2015, 8, 1237-1244.

11

Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S. W.; Kang, K. Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 2014, 114, 11788-11827.

12

You, Y.; Sang, Z. S.; Liu, J. P. Recent developments on aqueous sodium-ion batteries. Mater. Technol. 2016, 31, 501-509.

13

Dong, X. L.; Chen, L.; Liu, J. Y.; Haller, S.; Wang, Y. G.; Xia, Y. Y. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci. Adv. 2016, 2, e1501038.

14

Wu, X. Y.; Sun, M. Y.; Shen, Y. F.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry. ChemSusChem 2014, 7, 407-411.

15

Gao, H. C; Goodenough, J. B. An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3. Angew. Chem., Int. Ed. 2016, 55, 12768-12772.

16

Zhang, Q.; Liao, C. Y.; Zhai, T. Y.; Li, H. Q. A high rate 1.2 V aqueous sodium-ion battery based on all NASICON structured NaTi2(PO4)3 and Na3V2(PO4)3. Electrochim. Acta 2016, 196, 470-478.

17

Zhu, C. B.; Song, K. P.; van Aken, P. A.; Maier, J.; Yu, Y. Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: An ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Lett. 2014, 14, 2175-2180.

18

Liu, T. F.; Wang, B.; Gu, X. X.; Wang, L.; Ling, M.; Liu, G.; Wang, D. L.; Zhang, S. Q. All-climate sodium ion batteries based on the NASICON electrode materials. Nano Energy 2016, 30, 756-761.

19

Park, S. I.; Gocheva, I.; Okada, S.; Yamaki, J. I. Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries. J. Electrochem. Soc. 2011, 158, A1067-A1070.

20

Chen, L.; Shao, H. Z.; Zhou, X. F.; Liu, G. Q.; Jiang, J.; Liu, Z. P. Water-mediated cation intercalation of open-framework indium hexacyanoferrate with high voltage and fast kinetics. Nat. Commun. 2016, 7, 11982.

21

Song, W. X.; Ji, X. B.; Zhu, Y. R.; Zhu, H. J.; Li, F. Q.; Chen, J.; Lu, F.; Yao, Y. P.; Banks, C. E. Aqueous sodium-ion battery using a Na3V2(PO4)3 electrode. ChemElectroChem 2014, 1, 871-876.

22

Zhang, L. D.; Huang, T.; Yu, A. S. Carbon-coated Na3V2(PO4)3 nanocomposite as a novel high rate cathode material for aqueous sodium ion batteries. J. Alloys Compd. 2015, 646, 522-527.

23

Mason, C. W.; Lange, F. Aqueous ion battery systems using sodium vanadium phosphate stabilized by titanium substitution. ECS Electrochem. Lett. 2015, 4, A79-A82.

24

Liu, J.; Zhang, J. G.; Yang, Z. G.; Lemmon, J. P.; Imhoff, C.; Graff, G. L.; Li, L. Y.; Hu, J. Z.; Wang, C. M.; Xiao, J. et al. Materials science and materials chemistry for large scale electrochemical energy storage: From transportation to electrical grid. Adv. Funct. Mater. 2013, 23, 929-946.

25

Guo, S. H.; Liu, P.; Sun, Y.; Zhu, K.; Yi, J.; Chen, M. W.; Ishida, M.; Zhou, H. S. A high-voltage and ultralong-life sodium full cell for stationary energy storage. Angew. Chem., Int. Ed. 2015, 54, 11701-11705.

26

Song, W. X.; Cao, X. Y.; Wu, Z. P.; Chen, J.; Huangfu, K. L.; Wang, X. W.; Huang, Y. L.; Ji, X. B. A study into the extracted ion number for NASICON structured Na3V2(PO4)3 in sodium-ion batteries. Phys. Chem. Chem. Phys. 2014, 16, 17681-17687.

27

Jian, Z. L.; Zhao, L.; Pan, H. L.; Hu, Y. -S.; Li, H.; Chen, W.; Chen, L. Q. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem. Commun. 2012, 14, 86-89.

28

Shen, W.; Wang, C.; Liu, H. M.; Yang, W. S. Towards highly stable storage of sodium ions: A porous Na3V2(PO4)3/C cathode material for sodium-ion batteries. Chemistry 2013, 19, 14712-14718.

29

Kumar, P. R.; Jung, Y. H.; Lim, C. H.; Kim, D. K. Na3V2O2x(PO4)2F3-2x: A stable and high-voltage cathode material for aqueous sodium-ion batteries with high energy density. J. Mater. Chem. A 2015, 3, 6271-6275.

30

Lim, S. Y.; Kim, H.; Shakoor, R. A.; Jung, Y.; Choi, J. W. Electrochemical and thermal properties of NASICON structured Na3V2(PO4)3 as a sodium rechargeable battery cathode: A combined experimental and theoretical study. J. Electrochem. Soc. 2012, 159, A1393-A1397.

31

Li, S.; Dong, Y. F.; Xu, L.; Xu, X.; He, L.; Mai, L. Q. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3Nanograins for high-performance symmetric sodium-ion batteries. Adv. Mater. 2014, 26, 3545-3553.

32

Vujković, M.; Mitrić, M.; Mentus, S. High-rate intercalation capability of NaTi2(PO4)3/C composite in aqueous lithium and sodium nitrate solutions. J. Power Sources 2015, 288, 176-186.

33

Roh, H. K.; Kim, H. K.; Kim, M. S.; Kim, D. H.; Chung, K. Y.; Roh, K. C.; Kim, K. B. In situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries. Nano Res. 2016, 9, 1844-1855.

34

Song, J. J.; Park, S.; Gim, J.; Mathew, V.; Kim, S.; Jo, J.; Kim, S.; Kim, J. High rate performance of a NaTi2(PO4)3/rGO composite electrode via pyro synthesis for sodium ion batteries. J. Mater. Chem. A 2016, 4, 7815-7822.

35

Luo, J. Y.; Cui, W. J.; He, P.; Xia, Y. Y. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2010, 2, 760-765.

36

Hou, Z. G.; Li, X. N.; Liang, J. W.; Zhu, Y. C.; Qian, Y. T. An aqueous rechargeable sodium ion battery based on a NaMnO2-NaTi2(PO4)3 hybrid system for stationary energy storage. J. Mater. Chem. A 2015, 3, 1400-1404.

37

Li, Z.; Young, D.; Xiang, K.; Carter, W. C.; Chiang, Y. M. Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2system. Adv. Energy Mater. 2013, 3, 290-294.

38

Pasta, M.; Wessells, C. D.; Liu, N.; Nelson, J.; McDowell, M. T.; Huggins, R. A.; Toney, M. F.; Cui, Y. Full open-framework batteries for stationary energy storage. Nat. Commun. 2014, 5, 3007.

39

Liu, Y.; Zhang, B. H.; Xiao, S. Y.; Liu, L. L.; Wen, Z. B.; Wu, Y. P. A nanocomposite of MoO3 coated with PPy as an anode material for aqueous sodium rechargeable batteries with excellent electrochemical performance. Electrochim. Acta 2014, 116, 512-517.

Nano Research
Pages 490-498
Cite this article:
Wang H, Zhang T, Chen C, et al. High-performance aqueous symmetric sodium-ion battery using NASICON-structured Na2VTi(PO4)3. Nano Research, 2018, 11(1): 490-498. https://doi.org/10.1007/s12274-017-1657-5

627

Views

94

Crossref

N/A

Web of Science

95

Scopus

5

CSCD

Altmetrics

Received: 26 February 2017
Revised: 25 April 2017
Accepted: 30 April 2017
Published: 07 June 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return