Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Activated graphene (AG) with various specific surface areas, pore volumes, and average pore sizes is fabricated and applied as a matrix for sulfur. The impacts of the AG pore structure parameters and sulfur loadings on the electrochemical performance of lithium-sulfur batteries are systematically investigated. The results show that specific capacity, cycling performance, and Coulombic efficiency of the batteries are closely linked to the pore structure and sulfur loading. An AG3/S composite electrode with a high sulfur loading of 72 wt.% exhibited an excellent long-term cycling stability (50% capacity retention over 1, 000 cycles) and extra-low capacity fade rate (0.05% per cycle). In addition, when LiNO3 was used as an electrolyte additive, the AG3/S electrode exhibited a similar capacity retention and high Coulombic efficiency (~98%) over 1, 000 cycles. The excellent electrochemical performance of the series of AG3/S electrodes is attributed to the mixed micro/mesoporous structure, high surface area, and good electrical conductivity of the AG matrices and the well-distributed sulfur within the micro/mesopores, which is beneficial for electrical and ionic transfer during cycling.
Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.
Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.
Lin, M. C.; Gong, M.; Lu, B. G.; Wu, Y. P.; Wang, D. Y.; Guan, M. Y.; Angell, M.; Chen, C. X.; Yang, J.; Hwang, B. J. et al. An ultrafast rechargeable aluminium–ion battery. Nature 2015, 520, 324–328.
Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506.
Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium–sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.
Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.
Liu, M. N.; Ye, F. M.; Li, W. F.; Li, H. F.; Zhang, Y. G. Chemical routes toward long-lasting lithium/sulfur cells. Nano Res. 2016, 9, 94–116.
Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.
Bai, S. Y.; Liu, X. Z.; Zhu, K.; Wu, S. C.; Zhou, H. S. Metalorganic framework-based separator for lithium–sulfur batteries. Nat. Energy 2016, 1, 16094.
Li, Z.; Zhang, J. T.; Chen, Y. M.; Li, J.; Lou, X. W. Pie-like electrode design for high-energy density lithium–sulfur batteries. Nat. Commun. 2015, 6, 8850.
Yuan, S. Y.; Bao, J. L.; Wang, L. N.; Xia, Y. Y.; Truhlar, D. G.; Wang, Y. G. Graphene-supported nitrogen and boron rich carbon layer for improved performance of lithium– sulfur batteries due to enhanced chemisorption of lithium polysulfides. Adv. Energy Mater. 2016, 6, 1501733.
Wang, H. Q.; Zhang, W. C.; Liu, H. K.; Guo, Z. P. A strategy for configuration of an integrated flexible sulfur cathode for high-performance lithium–sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3992–3996.
Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nat. Commun. 2014, 5, 3410.
Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. W.; Wang, S. G.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. A graphenepure-sulfur sandwich structure for ultrafast, long-life lithium–sulfur batteries. Adv. Mater. 2014, 26, 625–631.
Wang, L. N.; Wang, Y. G.; Xia, Y. Y. A high performance lithium-ion sulfur battery based on a Li2S cathode using a dual-phase electrolyte. Energy Environ. Sci. 2015, 8, 1551–1558.
Ding, Y. L.; Kopold, P.; Hahn, K.; Van Aken, P. A.; Maier, J.; Yu, Y. Facile solid-state growth of 3D well-interconnected nitrogen-rich carbon nanotube-graphene hybrid architectures for lithium–sulfur batteries. Adv. Funct. Mater. 2016, 26, 1112–1119.
Zu, C. X.; Azimi, N.; Zhang, Z. C.; Manthiram, A. Insight into lithium-metal anodes in lithium–sulfur batteries with a fluorinated ether electrolyte. J. Mater. Chem. A 2015, 3, 14864–14870.
Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.
Liu, M. K.; Yang, Z. B.; Sun, H.; Lai, C.; Zhao, X. S.; Peng, H. S.; Liu, T. X. A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries. Nano Res. 2016, 9, 3735–3746.
Li, N. W.; Zheng, M. B.; Lu, H. L.; Hu, Z. B.; Shen, C. F.; Chang, X. F.; Ji, G. B.; Cao, J. M.; Shi, Y. High-rate lithium–sulfur batteries promoted by reduced graphene oxide coating. Chem. Commun. 2012, 48, 4106–4108.
Zhang, S. T.; Li, N. W.; Lu, H. L.; Zheng, J. F.; Zang, R.; Cao, J. M. Improving lithium–sulfur battery performance via a carbon-coating layer derived from the hydrothermal carbonization of glucose. RSC Adv. 2015, 5, 50983–50988.
Ma, Z. L.; Li, Z.; Hu, K.; Liu, D. D.; Huo, J.; Wang, S. Y. The enhancement of polysulfide absorbsion in Li–S batteries by hierarchically porous CoS2/carbon paper interlayer. J. Power Sources 2016, 325, 71–78.
Ma, Z. L.; Huang, X. B.; Jiang, Q. Q.; Huo, J.; Wang, S. Y. Enhanced cycling stability of lithium–sulfur batteries by electrostatic-interaction. Electrochim. Acta 2015, 182, 884–890.
Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li–S batteries. ACS Nano 2014, 8, 9295–9303.
Papandrea, B.; Xu, X.; Xu, Y. X.; Chen, C. Y.; Lin, Z. Y.; Wang, G. M.; Luo, Y. Z.; Liu, M.; Huang, Y.; Mai, L. Q. et al. Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium–sulfur battery. Nano Res. 2016, 9, 240–248.
Tao, X. Y.; Wang, J. G.; Ying, Z. G.; Cai, Q. X.; Zheng, G. Y.; Gan, Y. P.; Huang, H.; Xia, Y.; Liang, C.; Zhang, W. K. et al. Strong sulfur binding with conducting magnéliphase TinO2n–1 nanomaterials for improving lithium–sulfur batteries. Nano Lett. 2014, 14, 5288–5294.
Tang, C.; Li, B. Q.; Zhang, Q.; Zhu, L.; Wang, H. F.; Shi, J. L.; Wei, F. CaO-templated growth of hierarchical porous graphene for high-power lithium–sulfur battery applications. Adv. Funct. Mater. 2016, 26, 577–585.
Huang, Y.; Zheng, M. B.; Lin, Z. X.; Zhao, B.; Zhang, S. T.; Yang, J. Z.; Zhu, C. L.; Zhang, H.; Sun, D. P.; Shi, Y. Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high-performance lithium– sulfur batteries. J. Mater. Chem. A 2015, 3, 10910–10918.
Li, X.; Li, X. F.; Banis, M. N.; Wang, B. Q.; Lushington, A.; Cui, X. Y.; Li, R. Y.; Sham, T. K.; Sun, X. L. Tailoring interactions of carbon and sulfur in Li–S battery cathodes: Significant effects of carbon-heteroatom bonds. J. Mater. Chem. A 2014, 2, 12866–12872.
Li, X. L.; Cao, Y. L.; Qi, W.; Saraf, L. V.; Xiao, J.; Nie, Z. M.; Mietek, J.; Zhang, J. G.; Schwenzer, B.; Liu, J. Optimization of mesoporous carbon structures for lithium– sulfur battery applications. J. Mater. Chem. 2011, 21, 16603–16610.
Chen, S. Q.; Huang, X. D.; Liu, H.; Sun, B.; Yeoh, W.; Li, K. F.; Zhang, J. Q.; Wang, G. X. 3D hyperbranched hollow carbon nanorod architectures for high-performance lithium– sulfur batteries. Adv. Energy Mater. 2014, 4, 1301761.
Zhang, C. F.; Wu, H. B.; Yuan, C. Z.; Guo, Z. P.; Lou, X. W. Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew. Chem., Int. Ed. 2012, 51, 9592–9595.
Zeng, L. C.; Pan, F. S.; Li, W. H.; Jiang, Y.; Zhong, X. W.; Yu, Y. Free-standing porous carbon nanofibers-sulfur composite for flexible Li–S battery cathode. Nanoscale, 2014, 6, 9579–9587.
Chen, S. Q.; Huang, X. D.; Sun, B.; Zhang, J. Q.; Liu, H.; Wang, G. X. Multi-shelled hollow carbon nanospheres for lithium–sulfur batteries with superior performances. J. Mater. Chem. A 2014, 2, 16199–16207.
Xu, F.; Tang, Z. W.; Huang, S. Q.; Chen, L. Y.; Liang, Y. R.; Mai, W. C.; Zhong, H.; Fu, R. W.; Wu, D. C. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nat. Commun. 2015, 7, 7221.
Zang, J.; An, T. H.; Dong, Y. J.; Fang, X. L.; Zheng, M. S.; Dong, Q. F.; Zheng, N. F. Hollow-in-hollow carbon spheres with hollow foam-like cores for lithium–sulfur batteries. Nano Res. 2015, 8, 2663–2675.
Ding, B.; Yuan, C. Z.; Shen, L. F.; Xu, G. Y.; Nie, P.; Lai, Q. X.; Zhang, X. G. Chemically tailoring the nanostructure of graphene nanosheets to confine sulfur for highperformance lithium–sulfur batteries. J. Mater. Chem. A 2013, 1, 1096–1101.
Wu, C.; Fu, L. J.; Maier, J.; Yu, Y. Free-standing graphenebased porous carbon films with three-dimensional hierarchical architecture for advanced flexible Li–sulfur batteries. J. Mater. Chem. A 2015, 3, 9438–9445.
Mi, K.; Jiang, Y.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Hierarchical carbon nanotubes with a thick microporous wall and inner channel as efficient scaffolds for lithium– sulfur batteries. Adv. Funct. Mater. 2016, 26, 1571–1579.
Chen, S. Q.; Sun, B.; Xie, X. Q.; Mondal, A. K.; Huang, X. D.; Wang, G. X. Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium–sulfur batteries with long cycle life. Nano Energy 2015, 16, 268– 280.
Zhang, S. T.; Zheng, M. B.; Lin, Z. X.; Li, N. W.; Liu, Y. J.; Zhao, B.; Pang, H.; Cao, J. M.; He, P.; Shi, Y. Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithium–sulfur batteries. J. Mater. Chem. A 2014, 2, 15889–15896.
Lee, J. T.; Zhao, Y. Y.; Kim, H.; II Cho, W.; Yushin, G. Sulfur infiltrated activated carbon cathodes for lithium sulfur cells: The combined effects of pore size distribution and electrolyte molarity. J. Power Sources 2014, 248, 752–761.
Yao, Y.; Wu, F. Naturally derived nanostructured materials from biomass for rechargeable lithium/sodium batteries. Nano Energy 2015, 17, 91–103.
Wang, J. C.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725.
Strubel, P.; Thieme, S.; Biemelt, T.; Helmer, A.; Oschatz, M.; Brückner, J.; Althues, H.; Kaskel, S. ZnO hard templating for synthesis of hierarchical porous carbons with tailored porosity and high performance in lithium–sulfur battery. Adv. Funct. Mater. 2015, 25, 287–297.
Liang, C. D.; Dudney, N. J.; Howe, J. Y. Hierarchically structured sulfur/carbon nanocomposite material for highenergy lithium battery. Chem. Mater. 2009, 21, 4724–4730.
Ye, H.; Yin, Y. X.; Xin, S.; Guo, Y. G. Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li–S batteries. J. Mater. Chem. A 2013, 1, 6602–6608.
Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.
You, Y.; Zeng, W. C.; Yin, Y. X.; Zhang, J.; Yang, C. P.; Zhu, Y. W.; Guo, Y. G. Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li–S batteries. J. Mater. Chem. A 2015, 3, 4799–4802.
Chen, X. A.; Xiao, Z. B.; Ning, X. T.; Liu, Z.; Yang, Z.; Zou, C.; Wang, S.; Chen, X. H.; Chen, Y.; Huang, S. M. Sulfur-impregnated, sandwich-type, hybrid carbon nanosheets with hierarchical porous structure for high-performance lithium–sulfur batteries. Adv. Energy Mater. 2014, 4, 1301988.
Kruk, M.; Jaroniec, M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater. 2001, 13, 3169–3183.
Zhang, S. T.; Zheng, M. B.; Lin, Z. X.; Zang, R.; Huang, Q. L.; Xue, H. G.; Cao, J. M.; Pang, H. Mango stone-derived activated carbon with high sulfur loading as a cathode material for lithium–sulfur batteries. RSC Adv. 2016, 6, 39918–39925.
Karthikeyan, K.; Amaresh, S.; Lee, S. N.; Sun, X. L.; Aravindan, V.; Lee, Y. G.; Lee, Y. S. Construction of highenergy-density supercapacitors from pine-cone-derived highsurface-area carbons. ChemSusChem 2014, 7, 1435–1442.
Yang, X.; Zhang, L.; Zhang, F.; Huang, Y.; Chen, Y. S. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium–sulfur batteries. ACS Nano 2014, 8, 5208–5215.
Thieme, S.; Brückner, J.; Meier, A.; Bauer, I.; Gruber, K.; Kaspar, J.; Helmer, A.; Althues, H.; Schmuck, M.; Kaskel, S. A lithium–sulfur full cell with ultralong cycle life: Influence of cathode structure and polysulfide additive. J. Mater. Chem. A 2015, 3, 3808–3820.
Rong, J. P.; Ge, M. Y.; Fang, X.; Zhou, C. W. Solution ionic strength engineering as a generic strategy to coat graphene oxide (GO) on various functional particles and its application in high-performance lithium–sulfur (Li–S) batteries. Nano Lett. 2014, 14, 473–479.
Zhang, S. S. Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta 2012, 70, 344–348.
Zhang, S. S. Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte. J. Electrochem. Soc. 2012, 159, A920–A923.
Xu, R.; Belharouak, I.; Li, J. C. M.; Zhang, X. F.; Bloom, I.; Bareño, J. Role of polysulfides in self-healing lithium–sulfur batteries. Adv. Energy Mater. 2013, 3, 833–838.
Suo, L. M.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. Q. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481.
He, G.; Ji, X. L.; Nazar, L. High "C" rate Li–S cathodes: Sulfur imbibed bimodal porous carbons. Energy Environ. Sci. 2011, 4, 2878–2883.
Tao, X. Y.; Chen, X. R.; Xia, Y.; Huang, H.; Gan, Y. P.; Wu, R.; Chen, F.; Zhang, W. K. Highly mesoporous carbon foams synthesized by a facile, cost-effective and templatefree Pechini method for advanced lithium–sulfur batteries. J. Mater. Chem. A 2013, 1, 3295–3301.
Deng, Z. F.; Zhang, Z. A.; Lai, Y. Q.; Liu, J.; Li, J.; Liu, Y. X. Electrochemical impedance spectroscopy study of a lithium/sulfur battery: Modeling and analysis of capacity fading. J. Electrochem. Soc. 2013, 160, A553–A558.
Cañas, N. A.; Hirose, K.; Pascucci, B.; Wagner, N.; Friedrich, K. A.; Hiesgen, R. Investigations of lithium–sulfur batteries using electrochemical impedance spectroscopy. Electrochim. Acta 2013, 97, 42–51.
Murali, S.; Potts, J. R.; Stoller, S.; Park, J.; Stoller, M. D.; Zhang, L. L.; Zhu, Y. W.; Ruoff, R. S. Preparation of activated graphene and effect of activation parameters on electrochemical capacitance. Carbon 2012, 50, 3482–3485.