Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Nafion-assisted exfoliation of MoS2 in water phase and the application in quick-response NIR light controllable multi-shape memory membrane

Wei JiaBeibei Tang()Peiyi Wu()
State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan UniversityShanghai200433China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

In the current study, Nafion is adopted as a dispersant for assisting the water-phase exfoliation of MoS2. The completely ionized hydrophilic sulfonic groups and hydrophobic polytetrafluoroethylene backbone permit strong non-covalent bonding interactions between Nafion and exfoliated nanosheets for stabilization and functionalization to obtain Nafion–modified MoS2 (N-MoS2) nanocomposites. These interactions are stable in different pH environments. The concentration of Nafion influences the exfoliation efficiency and the size of the exfoliated nanosheets. N–MoS2/Nafion composite membranes are prepared. The N-MoS2 nanocomposite exhibits good dispersibility in a Nafion matrix, benefitting from the functionalization of Nafion. The N-MoS2/Nafion composite membrane shows excellent near-infrared light-controllable multi-shape-memory performance with convenient operation. The Nafion-assisted water-phase exfoliation method shows good efficiency, convenient operation, environmental benignity, and broad application potential.

Electronic Supplementary Material

Download File(s)
nr-11-1-542_ESM.pdf (2.5 MB)

References

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. A.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

2

Wang, H. T.; Lu, Z. Y.; Xu, S. C.; Kong, D. S.; Cha, J. J.; Zheng, G. Y.; Hsu, P. C.; Yan, K.; Bradshaw, D.; Prinz, F. B. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 2013, 110, 19701-19706.

3

Bang, G. S.; Nam, K. W.; Kim, J. Y.; Shin, J.; Choi, J. W.; Choi, S. Y. Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. ACS Appl. Mater. Interfaces 2014, 6, 7084-7089.

4

Gopalakrishnan, D.; Damien, D.; Shaijumon, M. M. MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 2014, 8, 5297-5303.

5

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.

6

Cho, H. B.; Tokoi, Y.; Tanaka, S.; Suematsu, H.; Suzuki, T.; Jiang, W. H.; Niihara, K.; Nakayama, T. Modification of BN nanosheets and their thermal conducting properties in nanocomposite film with polysiloxane according to the orientation of BN. Compos. Sci. Technol. 2011, 71, 1046-1052.

7

Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296-7299.

8

Hwang, H.; Kim, H.; Cho, J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011, 11, 4826-4830.

9

Ou, J. Z.; Chrimes, A. F.; Wang, Y. C.; Tang, S. Y.; Strano, M. S.; Kalantar-zadeh, K. Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems. Nano Lett. 2014, 14, 857-863.

10

Lei, Z. Y.; Zhou, Y. Y.; Wu, P. Y. Simultaneous exfoliation and functionalization of MoSe2 nanosheets to prepare "smart" nanocomposite hydrogels with tunable dual stimuli-responsive behavior. Small 2016, 12, 3112-3118.

11

Zhang, M.; Howe, R. C. T.; Woodward, R. I.; Kelleher, E. J. R.; Torrisi, F.; Hu, G. H.; Popov, S. V.; Taylor, J. R.; Hasan, T. Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er: Fiber laser. Nano Res. 2015, 8, 1522-1534.

12

Tongay, S.; Fan, W.; Kang, J.; Park, J.; Koldemir, U.; Suh, J.; Narang, D. S.; Liu, K.; Ji, J.; Li, J. B. et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 2014, 14, 3185-3190.

13

Losurdo, M.; Giangregorio, M. M.; Capezzuto, P.; Bruno, G. Graphene CVD growth on copper and nickel: Role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 2011, 13, 20836-20843.

14

Feng, K.; Tang, B. B.; Wu, P. Y. Selective growth of MoS2 for proton exchange membranes with extremely high selectivity. ACS Appl. Mater. Interfaces 2013, 5, 13042-13049.

15

Lei, Z. Y.; Zhu, W. C.; Sun, S. T.; Wu, P. Y. MoS2-based dual-responsive flexible anisotropic actuators. Nanoscale 2016, 8, 18800-18807.

16

Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568-571.

17

Liu, J. Q.; Zeng, Z. Y.; Cao, X. H.; Lu, G.; Wang, L. H.; Fan, Q. L.; Huang, W.; Zhang, H. Preparation of MoS2-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. Small 2012, 8, 3517-3522.

18

Wang, D.; Song, L.; Zhou, K. Q.; Yu, X. J.; Hu, Y.; Wang, J. Anomalous nano-barrier effects of ultrathin molybdenum disulfide nanosheets for improving the flame retardance of polymer nanocomposites. J. Mater. Chem. A 2015, 3, 14307-14317.

19

Bari, R.; Parviz, D.; Khabaz, F.; Klaassen, C. D.; Metzler, S. D.; Hansen, M. J.; Khare, R.; Green, M. J. Liquid phase exfoliation and crumpling of inorganic nanosheets. Phys. Chem. Chem. Phys. 2015, 17, 9383-9393.

20

Sim, H.; Lee, J.; Park, B.; Kim, S. J.; Kang, S.; Ryu, W.; Jun, S. C. High-concentration dispersions of exfoliated MoS2 sheets stabilized by freeze-dried silk fibroin powder. Nano Res. 2016, 9, 1709-1722.

21

Guan, G. J.; Zhang, S. Y.; Liu, S. H.; Cai, Y. Q.; Low, M.; Teng, C. P.; Phang, I. Y.; Cheng, Y.; Duei, K. L.; Srinivasan, B. M. et al. Protein induces layer-by-layer exfoliation of transition metal dichalcogenides. J. Am. Chem. Soc. 2015, 137, 6152-6155.

22

Smitha, B.; Sridhar, S.; Khan, A. A. Solid polymer electrolyte membranes for fuel cell applications-A review. J. Membrane Sci. 2005, 259, 10-26.

23

Jia, W.; Feng, K.; Tang, B. B.; Wu, P. Y. β-Cyclodextrin modified silica nanoparticles for Nafion based proton exchange membranes with significantly enhanced transport properties. J. Mater. Chem. A 2015, 3, 15607-15615.

24

Fontananova, E.; Cucunato, V.; Curcio, E.; Trotta, F.; Biasizzo, M.; Drioli, E.; Barbieri, G. Influence of the preparation conditions on the properties of polymeric and hybrid cation exchange membranes. Electrochim. Acta 2012, 66, 164-172.

25

Xie, T.; Page, K. A.; Eastman, S. A. Strain-based temperature memory effect for Nafion and its molecular origins. Adv. Funct. Mater. 2011, 21, 2057-2066.

26

Kunzelman, J.; Chung, T.; Mather, P. T.; Weder, C. Shape memory polymers with built-in threshold temperature sensors. J. Mater. Chem. 2008, 18, 1082-1086.

27

Kim, S.; Sitti, M.; Xie, T.; Xiao, X. C. Reversible dry micro-fibrillar adhesives with thermally controllable adhesion. Soft Matter 2009, 5, 3689-3693.

28

Sokolowski, W.; Metcalfe, A.; Hayashi, S.; Yahia, L.; Raymond, J. Medical applications of shape memory polymers. Biomed. Mater. 2007, 2, S23.

29

El Feninat, F.; Laroche, G.; Fiset, M.; Mantovani, D. Shape memory materials for biomedical applications. Adv. Eng. Mater. 2002, 4, 91.

30

Xie, T. Tunable polymer multi-shape memory effect. Nature 2010, 464, 267-270.

31

Chou, S. S.; Kaehr, B.; Kim, J.; Foley, B. M.; De, M.; Hopkins, P. E.; Huang, J. X.; Brinker, C. J.; Dravid, V. P. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem. Int. Ed. 2013, 125, 4254-4258.

32

Yin, W. Y.; Yan, L.; Yu, J.; Tian, G.; Zhou, L. J.; Zheng, X. P.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z. J. et al. High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 2014, 8, 6922-6933.

33

Wang, N.; Wei, F.; Qi, Y. H.; Li, H. X.; Lu, X.; Zhao, G. Q.; Xu, Q. Synthesis of strongly fluorescent molybdenum disulfide nanosheets for cell-targeted labeling. ACS Appl. Mater. Interfaces 2014, 6, 19888-19894.

34

Matte, H. S. S. R.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem. Int. Ed. 2010, 122, 4153-4156.

35

Fujimura, M.; Hashimoto, T.; Kawai, H. Small-angle X-ray scattering study of perfluorinated ionomer membranes. 1. Origin of two scattering maxima. Macromolecules 1981, 14, 1309-1315.

36

Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.

37

Szajdzinska-Pietek, E.; Wolszczak, M.; Plonka, A.; Schlick, S. Structure and dynamics of micellar aggregates in aqueous Nafion solutions reported by electron spin resonance and fluorescence probes. Macromolecules 1999, 32, 7454-7460.

38

Blanch, A. J.; Lenehan, C. E.; Quinton, J. S. Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution. J. Phys. Chem. B 2010, 114, 9805-9811.

39

Yang, L. J.; Tang, B. B.; Wu, P. Y. A novel proton exchange membrane prepared from imidazole metal complex and Nafion for low humidity. J. Membrane Sci. 2014, 467, 236-243.

40

De Almeida, S. H.; Kawano, Y. Thermal behavior of Nafion membranes. J. Therm. Anal. Calorim. 1999, 58, 569-577.

41

Singh, R. K.; Kunimatsu, K.; Miyatake, K.; Tsuneda, T. Experimental and theoretical infrared spectroscopic study on hydrated Nafion membrane. Macromolecules 2016, 49, 6621-6629.

42

Sahu, S.; Behera, B.; Maiti, T. K.; Mohapatra, S. Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bio-imaging agents. Chem. Commun. 2012, 48, 8835-8837.

43

Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49-50, 79-120.

44

Kawano, Y.; Wang, Y. Q.; Palmer, R. A.; Aubuchon, S. R. Stress-strain curves of Nafion membranes in acid and salt forms. Polímeros 2002, 12, 96-101.

45

Kundu, S.; Simon, L. C.; Fowler, M.; Grot, S. Mechanical properties of NafionTM electrolyte membranes under hydrated conditions. Polymer 2005, 46, 11707-11715.

Nano Research
Pages 542-553
Cite this article:
Jia W, Tang B, Wu P. Nafion-assisted exfoliation of MoS2 in water phase and the application in quick-response NIR light controllable multi-shape memory membrane. Nano Research, 2018, 11(1): 542-553. https://doi.org/10.1007/s12274-017-1665-5
Metrics & Citations  
Article History
Copyright
Return