AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Unique role of non-mercapto groups in thiol-pinning-mediated Ag growth on Au nanoparticles

Jiaqi Chen1,2Jiao Yan1,2Yuandong Chen1,2Shuai Hou1Yinglu Ji1Xiaochun Wu1( )
CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
University of Chinese Academy of SciencesBeijing100049China
Show Author Information

Graphical Abstract

Abstract

Owing to the strong affinity of thiols to Au and Ag, they are often employed to modify the surfaces of nanoparticles (NPs). Recently, these strong ligand-interface interactions have been employed to control NP growth, and this technique has emerged as a unique modulation strategy for creating unconventional plasmonic hybrid nanostructures. In these systems, the roles of the non-mercapto components of the thiol molecules and their structures are still unknown. Therefore, we herein present our investigation into this phenomenon. Primary amino (–NH2) groups in thiols are found to play a key role in regulating growth kinetics, i.e., in accelerating Ag deposition on Au NPs. The–NH2 groups are thought to bring Ag ions to the particle surface by coordinating to them, and thereby assist their reduction. The effect of molecular structure is non-trivial and thus provides the possibility of selective thiol detection. Based on the dependence of kinetic modulation on the non-mercapto components and molecular structures of molecules, we demonstrate the highly sensitive and specific detection of cysteine (limit of detection: 6 nM) in a mixture of 19 natural amino acids based on Ag growth on Au nanospheres. In addition, based on this modulation effect, we reveal the entrapping of chiral thiols within the growth layer through their plasmonic circular dichroism (PCD) responses. We believe that thiol-based growth regulation has great potential for creating plasmonic nanostructures with novel functionalities.

Electronic Supplementary Material

Download File(s)
nr-11-2-614_ESM.pdf (2.6 MB)

References

1

Cortie, M. B.; McDonagh, A. M. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem. Rev. 2011, 111, 3713-3735.

2

Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid- phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044-1060.

3

Hao, J. R.; Xiong, B.; Chen, X. D.; He, Y.; Yeung, E. S. High-throughput sulfide sensing with colorimetric analysis of single Au-Ag core-shell nanoparticles. Anal. Chem. 2014, 86, 4663-4667.

4

Howes, P. D.; Chandrawati, R.; Stevens, M. M. Colloidal nanoparticles as advanced biological sensors. Science 2014, 346, 1247390.

5

Baek, S. W.; Park, G.; Noh, J.; Cho, C.; Lee, C. H.; Seo, M. K.; Song, H.; Lee, J. Y. Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells. ACS Nano 2014, 8, 3302-3312.

6

Wu, H. X.; Wang, P.; He, H. L.; Jin, Y. D. Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties. Nano Res. 2012, 5, 135-144.

7

Zhou, N.; Polavarapu, L.; Gao, N. Y.; Pan, Y. L.; Yuan, P. Y.; Wang, Q.; Xu, Q. H. TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation. Nanoscale 2013, 5, 4236-4241.

8

Burrows, N. D.; Lin, W.; Hinman, J. G.; Dennison, J. M.; Vartanian, A. M.; Abadeer, N. S.; Grzincic, E. M.; Jacob, L. M.; Li, J.; Murphy, C. J. Surface chemistry of gold nanorods. Langmuir 2016, 32, 9905-9921.

9

Feng, Y. H.; He, J. T.; Wang, H.; Tay, Y. Y.; Sun, H.; Zhu, L. F.; Chen, H. Y. An unconventional role of ligand in continuously tuning of metal-metal interfacial strain. J. Am. Chem. Soc. 2012, 134, 2004-2007.

10

Feng, Y. H.; Wang, Y. W.; He, J. T.; Song, X. H.; Tay, Y. Y.; Hng, H. H.; Ling, X. Y.; Chen, H. Y. Achieving site-specificity in multistep colloidal synthesis. J. Am. Chem. Soc. 2015, 137, 7624-7627.

11

Huang, J. F.; Zhu, Y. H.; Liu, C. X.; Shi, Z.; Fratalocchi, A.; Han, Y. Unravelling Thiol's role in directing asymmetric growth of Au nanorod-Au nanoparticle dimers. Nano Lett. 2016, 16, 617-623.

12

Huang, J. F.; Liu, C. X.; Zhu, Y. H.; Masala, S.; Alarousu, E.; Han, Y.; Fratalocchi, A. Harnessing structural darkness in the visible and infrared wavelengths for a new source of light. Nat. Nanotechnol. 2016, 11, 60-66.

13

Huang, Y. J.; Dandapat, A.; Kim, D. H. Covalently capped seed-mediated growth: A unique approach toward hierarchical growth of gold nanocrystals. Nanoscale 2014, 6, 6478-6481.

14

Hou, S.; Yan, J.; Hu, Z. J.; Wu, X. C. Enhancing the plasmonic circular dichroism by entrapping chiral molecules at the core-shell interface of rod-shaped Au@Ag nanocrystals. Chem. Commun. 2016, 52, 2059-2062.

15

Ma, Y. Y.; Li, W. Y.; Cho, E. C.; Li, Z. Y.; Yu, T.; Zeng, J.; Xie, Z. X.; Xia, Y. N. Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. ACS Nano 2010, 4, 6725-6734.

16

Hu, Z. J.; Hou, S.; Ji, Y. L.; Wen, T.; Liu, W. Q.; Zhang, H.; Shi, X. W.; Yan, J.; Wu, X. C. Fast characterization of gold nanorods ensemble by correlating its structure with optical extinction spectral features. AIP Adv. 2014, 4, 117137.

17

Link, S.; El-Sayed, M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 1999, 103, 4212-4217.

18

Jiang, R. B.; Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Unraveling the evolution and nature of the plasmons in (Au core)-(Ag shell) nanorods. Adv. Mater. 2012, 24, OP200-OP207.

19

Gong, J. X.; Zhou, F.; Li, Z. Y.; Tang, Z. Y. Synthesis of Au@Ag core-shell nanocubes containing varying shaped cores and their localized surface plasmon resonances. Langmuir 2012, 28, 8959-8964.

20

Gómez-Graña, S.; Goris, B.; Altantzis, T.; Fernández-López, C.; Carbó-Argibay, E.; Guerrero-Martínez, A.; Almora- Barrios, N.; López, N.; Pastoriza-Santos, I.; Pérez-Juste, J. et al. Au@Ag nanoparticles: Halides stabilize {100} facets. J. Phys. Chem. Lett. 2013, 4, 2209-2216.

21

Pensa, E.; Cortés, E.; Corthey, G.; Carro, P.; Vericat, C.; Fonticelli, M. H.; Benítez, G.; Rubert, A. A.; Salvarezza, R. C. The chemistry of the sulfur-gold interface: In search of a unified model. Acc. Chem. Res. 2012, 45, 1183-1192.

22

Di Felice, R.; Selloni, A. Adsorption modes of cysteine on Au(111): Thiolate, amino-thiolate, disulfide. J. Chem. Phys. 2004, 120, 4906-4914.

23

Grönbeck, H.; Curioni, A.; Andreoni, W. Thiols and disulfides on the Au(111) surface: The headgroup-gold interaction. J. Am. Chem. Soc. 2000, 122, 3839-3842.

24

Khlebtsov, B.; Khanadeev, V.; Khlebtsov, N. Surface- enhanced Raman scattering inside Au@Ag core/shell nanorods. Nano Res. 2016, 9, 2303-2318.

25

Stobiecka, M.; Deeb, J.; Hepel, M. Ligand exchange effects in gold nanoparticle assembly induced by oxidative stress biomarkers: Homocysteine and cysteine. Biophys. Chem. 2010, 146, 98-107.

26

Bieri, M.; Bürgi, T. L-Glutathione chemisorption on gold and acid/base induced structural changes: A PM-IRRAS and time-resolved in situ ATR-IR spectroscopic study. Langmuir 2005, 21, 1354-1363.

27

Wang, Z. Y.; Li, M. Y.; Wang, W.; Fang, M.; Sun, Q. D.; Liu, C. J. Floating silver film: A flexible surface-enhanced Raman spectroscopy substrate for direct liquid phase detection at gas-liquid interfaces. Nano Res. 2016, 9, 1148-1158.

28

Wu, X. L.; Xu, L. G.; Ma, W.; Liu, L. Q.; Kuang, H.; Yan, W. J.; Wang, L. B.; Xu, C. L. Gold core-DNA-silver shell nanoparticles with intense plasmonic chiroptical activities. Adv. Funct. Mater. 2015, 25, 850-854.

29

Yaffe, N. R.; Blanch, E. W. Effects and anomalies that can occur in SERS spectra of biological molecules when using a wide range of aggregating agents for hydroxylamine-reduced and citrate-reduced silver colloids. Vib. Spectrosc. 2008, 48, 196-201.

30

Li, T.; Lin, O. L.; Lu, Z. Y.; He, L. M.; Wang, X. S. Preparation and characterization of silver loaded montmorillonite modified with sulfur amino acid. Appl. Surf. Sci. 2014, 305, 386-395.

31

Huang, R. S.; Hou, B. F.; Li, H. T.; Fu, X. C.; Xie, C. G. Preparation of silver nanoparticles supported mesoporous silica microspheres with perpendicularly aligned mesopore channels and their antibacterial activities. RSC Adv. 2015, 5, 61184-61190.

32

Hubert, F.; Testard, F.; Spalla, O. Cetyltrimethylammonium bromide silver bromide complex as the capping agent of gold nanorods. Langmuir 2008, 24, 9219-9222.

33

Tebbe, M.; Kuttner, C.; Mayer, M.; Maennel, M.; Pazos-Perez, N.; Konig, T. A. F.; Fery, A. Silver-overgrowth-induced changes in intrinsic optical properties of gold nanorods: From noninvasive monitoring of growth kinetics to tailoring internal mirror charges. J. Phys. Chem. C 2015, 119, 9513-9523.

34

Shen, J. S.; Li, D. H.; Zhang, M. B.; Zhou, J.; Zhang, H.; Jiang, Y. B. Metal-metal-interaction-facilitated coordination polymer as a sensing ensemble: A case study for cysteine sensing. Langmuir 2011, 27, 481-486.

35

Hou, S.; Wen, T.; Zhang, H.; Liu, W. Q.; Hu, X. N.; Wang, R. Y.; Hu, Z. J.; Wu, X. C. Fabrication of chiral plasmonic oligomers using cysteine-modified gold nanorods as monomers. Nano Res. 2014, 7, 1699-1705.

36

Meng, Q. T.; Jia, H. M.; Succar, P.; Zhao, L.; Zhang, R.; Duan, C. Y.; Zhang, Z. Q. A highly selective and sensitive on-off-on fluorescence chemosensor for cysteine detection in endoplasmic reticulum. Biosens. Bioelectron. 2015, 74, 461-468.

37

Xue, S. H.; Ding, S. S.; Zhai, Q. S.; Zhang, H. Y.; Feng, G. Q. A readily available colorimetric and near-infrared fluorescent turn-on probe for rapid and selective detection of cysteine in living cells. Biosens. Bioelectron. 2015, 68, 316-321.

38

Bronowicka-Adamska, P.; Zagajewski, J.; Czubak, J.; Wróbel, M. RP-HPLC method for quantitative determination of cystathionine, cysteine and glutathione: An application for the study of the metabolism of cysteine in human brain. J. Chromatogr. B 2011, 879, 2005-2009.

39

Bakirdere, S.; Bramanti, E.; D'ulivo, A.; Ataman, O. Y.; Mester, Z. Speciation and determination of thiols in biological samples using high performance liquid chromatography- inductively coupled plasma-mass spectrometry and high performance liquid chromatography-Orbitrap MS. Anal. Chim. Acta 2010, 680, 41-47.

40

Sudeep, P. K.; Joseph, S. T. S.; Thomas, K. G. Selective detection of cysteine and glutathione using gold nanorods. J. Am. Chem. Soc. 2005, 127, 6516-6517.

41

He, L. W.; Xu, Q. Y.; Liu, Y.; Wei, H. P.; Tang, Y. H.; Lin, W. Y. Coumarin-based turn-on fluorescence probe for specific detection of glutathione over cysteine and homocysteine. ACS Appl. Mater. Interfaces 2015, 7, 12809- 12813.

42

Lee, D.; Kim, G.; Yin, J.; Yoon, J. An aryl-thioether substituted nitrobenzothiadiazole probe for the selective detection of cysteine and homocysteine. Chem. Commun. 2015, 51, 6518-6520.

Nano Research
Pages 614-624
Cite this article:
Chen J, Yan J, Chen Y, et al. Unique role of non-mercapto groups in thiol-pinning-mediated Ag growth on Au nanoparticles. Nano Research, 2018, 11(2): 614-624. https://doi.org/10.1007/s12274-017-1666-4

681

Views

14

Crossref

N/A

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 18 January 2017
Revised: 29 April 2017
Accepted: 07 May 2017
Published: 08 August 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return