Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Comprehensive understanding of the structural/morphology stability of ultrathin (diameter < 10 nm) gold nanowires under real service conditions (such as under Joule heating) is a prerequisite for the reliable implementation of these emerging building blocks into functional nanoelectronics and mechatronics systems. Here, by using the in situ transmission electron microscopy (TEM) technique, we discovered that the Rayleigh instability phenomenon exists in ultrathin gold nanowires upon moderate heating. Through the controlled electron beam irradiation-induced heating mechanism (with < 100 ℃ temperature rise), we further quantified the effect of electron beam intensity and its dependence on Rayleigh instability in altering the geometry and morphology of the ultrathin gold nanowires. Moreover, in situ high-resolution TEM (HRTEM) observations revealed surface atomic diffusion process to be the dominating mechanism for the morphology evolution processes. Our results, with unprecedented details on the atomic-scale picture of Rayleigh instability and its underlying physics, provide critical insights on the thermal/structural stability of gold nanostructures down to a sub-10 nm level, which may pave the way for their interconnect applications in future ultralarge- scale integrated circuits.
Huo, Z. Y.; Tsung, C. K.; Huang, W. Y.; Zhang, X. F.; Yang, P. D. Sub-two nanometer single crystal Au nanowires. Nano Lett. 2008, 8, 2041-2044.
Lu, X. M.; Yavuz, M. S.; Tuan, H. Y.; Korgel, B. A.; Xia, Y. N. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction. J. Am. Chem. Soc. 2008, 130, 8900-8901.
Wang, C.; Hu, Y. J.; Lieber, C. M.; Sun, S. H. Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc. 2008, 130, 8902-8903.
Pud, S.; Kisner, A.; Heggen, M.; Belaineh, D.; Temirov, R.; Simon, U.; Offenhäusser, A.; Mourzina, Y.; Vitusevich, S. Ultrathin nanowires: Features of transport in ultrathin gold nanowire structures. Small 2013, 9, 846-852.
Rodrigues, V.; Fuhrer, T.; Ugarte, D. Signature of atomic structure in the quantum conductance of gold nanowires. Phys. Rev. Lett. 2000, 85, 4124-4127.
Pascual, J. I.; Méndez, J.; Gómez-Herrero, J.; Baró, A. M.; Garcia, N.; Landman, U.; Luedtke, W. D.; Bogachek, E. N.; Cheng, H. P. Properties of metallic nanowires: From conductance quantization to localization. Science 1995, 267, 1793-1795.
Roy, A.; Pandey, T.; Ravishankar, N.; Singh, A. K. Single crystalline ultrathin gold nanowires: Promising nanoscale interconnects. AIP Adv. 2013, 3, 032131.
Chen, Y.; Ouyang, Z.; Gu, M.; Cheng, W. L. Mechanically strong, optically transparent, giant metal superlattice nanomembranes from ultrathin gold nanowires. Adv. Mater. 2013, 25, 80-85.
Sánchez-Iglesias, A.; Rivas-Murias, B.; Grzelczak, M.; Pérez-Juste, J.; Liz-Marzán, L. M.; Rivadulla, F.; Correa- Duarte, M. A. Highly transparent and conductive films of densely aligned ultrathin Au nanowire monolayers. Nano Lett. 2012, 12, 6066-6070.
Maurer, J. H. M.; González-García, L.; Reiser, B.; Kanelidis, I.; Kraus, T. Sintering of ultrathin gold nanowires for transparent electronics. ACS Appl. Mater. Interfaces 2015, 7, 7838-7842.
Langley, D. P.; Lagrange, M.; Giusti, G.; Jiménez, C.; Bréchet, Y.; Nguyen, N. D.; Bellet, D. Metallic nanowire networks: Effects of thermal annealing on electrical resistance. Nanoscale 2014, 6, 13535-13543.
Rauber, M.; Muench, F.; Toimil-Molares, M. E.; Ensinger, W. Thermal stability of electrodeposited platinum nanowires and morphological transformations at elevated temperatures. Nanotechnology 2012, 23, 475710.
Rayleigh, J. W. S. L. On the instability of jets. Proc. London Math. Soc. 1878, s1-10, 4-13.
Nichols, F. A.; Mullins, W. W. Morphological changes of a surface of revolution due to capillarity-induced surface diffusion. J. Appl. Phys. 1965, 36, 1826-1835.
Mullins, W. W. Capillarity-induced surface morphologies. Interface Sci. 2001, 9, 9-20.
Molares, M. E. T.; Balogh, A. G.; Cornelius, T. W.; Neumann, R.; Trautmann, C. Fragmentation of nanowires driven by Rayleigh instability. Appl. Phys. Lett. 2004, 85, 5337-5339.
Karim, S.; Toimil-Molares, M. E.; Balogh, A. G.; Ensinger, W.; Cornelius, T. W.; Khan, E. U.; Neumann, R. Morphological evolution of Au nanowires controlled by Rayleigh instability. Nanotechnology 2006, 17, 5954-5959.
Novo, C.; Mulvaney, P. Charge-induced Rayleigh instabilities in small gold rods. Nano Lett. 2007, 7, 520-524.
Shin, H. S.; Yu, J.; Song, J. Y. Size-dependent thermal instability and melting behavior of Sn nanowires. Appl. Phys. Lett. 2007, 91, 173106.
Li, H. W.; Biser, J. M.; Perkins, J. T.; Dutta, S.; Vinci, R. P.; Chan, H. M. Thermal stability of Cu nanowires on a sapphire substrate. J. Appl. Phys. 2008, 103, 024315.
Qin, Y.; Lee, S. M.; Pan, A. L.; Gösele, U.; Knez, M. Rayleigh-instability-induced metal nanoparticle chains encapsulated in nanotubes produced by atomic layer deposition. Nano Lett. 2008, 8, 114-118.
Volk, A.; Knez, D.; Thaler, P.; Hauser, A. W.; Grogger, W.; Hofer, F.; Ernst, W. E. Thermal instabilities and Rayleigh breakup of ultrathin silver nanowires grown in helium nanodroplets. Phys. Chem. Chem. Phys. 2015, 17, 24570-24575.
Naik, J. P.; Prewett, P. D.; Das, K.; Raychaudhuri, A. K. Instabilities in focused ion beam-patterned Au nanowires. Microelectron. Eng. 2011, 88, 2840-2843.
Day, R. W.; Mankin, M. N.; Gao, R. X.; No, Y. S.; Kim, S. K.; Bell, D. C.; Park, H. G.; Lieber, C. M. Plateau-Rayleigh crystal growth of periodic shells on one-dimensional substrates. Nat. Nano 2015, 10, 345-352.
Roy, A.; Kundu, S.; Müller, K.; Rosenauer, A.; Singh, S.; Pant, P.; Gururajan, M. P.; Kumar, P.; Weissmüller, J.; Singh, A. K. et al. Wrinkling of atomic planes in ultrathin Au nanowires. Nano Lett. 2014, 14, 4859-4866.
Rabaey, J. M.; Chandrakasan, A. P.; Nikolic, B. Digital Integrated Circuits; 2nd ed. Prentice Hall: Englewood Cliffs, 2002.
Yu, Y.; Cui, F.; Sun, J. W.; Yang, P. D. Atomic structure of ultrathin gold nanowires. Nano Lett. 2016, 16, 3078-3084.
Zheng, H.; Cao, A. J.; Weinberger, C. R.; Huang, J. Y.; Du, K.; Wang, J. B.; Ma, Y. Y.; Xia, Y. N.; Mao, S. X. Discrete plasticity in sub-10-nm-sized gold crystals. Nat. Commun. 2010, 1, 144.
Wang, L. H.; Teng, J.; Liu, P.; Hirata, A.; Ma, E.; Zhang, Z.; Chen, M. W.; Han, X. D. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat. Commun. 2014, 5, 4402.
Wang, L. H.; Han, X. D.; Liu, P.; Yue, Y. H.; Zhang, Z.; Ma, E. In situ observation of dislocation behavior in nanometer grains. Phys. Rev. Lett. 2010, 105, 135501.
Zheng, H.; Wang, J. B.; Huang, J. Y.; Cao, A. J.; Mao, S. X. In situ visualization of birth and annihilation of grain boundaries in an Au nanocrystal. Phys. Rev. Lett. 2012, 109, 225501.
Han, X. D.; Zhang, Y. F.; Zheng, K.; Zhang, X. N.; Zhang, Z.; Hao, Y. J.; Guo, X. Y.; Yuan, J.; Wang, Z. L. Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Lett. 2007, 7, 452-457.
Han, X. D.; Zheng, K.; Zhang, Y. F.; Zhang, X. N.; Zhang, Z.; Wang, Z. L. Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 2007, 19, 2112-2118.
Wang, L. H.; Zheng, K.; Zhang, Z.; Han, X. D. Direct atomic-scale imaging about the mechanisms of ultralarge bent straining in Si nanowires. Nano Lett. 2011, 11, 2382-2385.
Yue, Y. H.; Liu, P.; Zhang, Z.; Han, X. D.; Ma, E. Approaching the theoretical elastic strain limit in copper nanowires. Nano Lett. 2011, 11, 3151-3155.
Qin, S. Y.; Kim, T. H.; Zhang, Y. N.; Ouyang, W. J.; Weitering, H. H.; Shih, C. K.; Baddorf, A. P.; Wu, R. Q.; Li, A. P. Correlating electronic transport to atomic structures in self-assembled quantum wires. Nano Lett. 2012, 12, 938-942.
Egerton, R. F. Choice of operating voltage for a transmission electron microscope. Ultramicroscopy 2014, 145, 85-93.
Zheng, K.; Wang, C. C.; Cheng, Y. Q.; Yue, Y. H.; Han, X. D.; Zhang, Z.; Shan, Z. W.; Mao, S. X.; Ye, M. M.; Yin, Y. D. et al. Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat. Commun. 2010, 1, 24.
Dai, G. L.; Wang, B. J.; Xu, S.; Lu, Y.; Shen, Y. J. Side- to-side cold welding for controllable nanogap formation from ※Dumbbell§ ultrathin gold nanorods. ACS Appl. Mater. Interfaces 2016, 8, 13506-13511.
José-Yacamán, M.; Gutierrez-Wing, C.; Miki, M.; Yang, D. Q.; Piyakis, K. N.; Sacher, E. Surface diffusion and coalescence of mobile metal nanoparticles. J. Phys. Chem. B 2005, 109, 9703-9711.
Lee, S. B.; Park, J.; van Aken, P. A. Formation of Pt-Zn alloy nanoparticles by electron-beam irradiation of wurtzite ZnO in the TEM. Nanoscale Res. Lett. 2016, 11, 339.
Rez, P.; Glaisher, R. W. Measurement of energy deposition in transmission electron microscopy. Ultramicroscopy 1991, 35, 65-69.
Sun, J.; He, L. B.; Lo, Y. C.; Xu, T.; Bi, H. C.; Sun, L. T.; Zhang, Z.; Mao, S. X.; Li, J. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat. Mater. 2014, 13, 1007-1012.
Nichols, F. A.; Mullins, W. W. Surface (interface) and volume diffusion contributions to morphological changes driven by capillarity. Trans. Metall. Soc. AIME 1965, 233, 1840.
McCallum, M. S.; Voorhees, P. W.; Miksis, M. J.; Davis, S. H.; Wong, H. Capillary instabilities in solid thin films: Lines. J. Appl. Phys. 1996, 79, 7604-7611.
Critchley, K.; Khanal, B. P.; Górzny, M. Ł.; Vigderman, L.; Evans, S. D.; Zubarev, E. R.; Kotov, N. A. Near-bulk conductivity of gold nanowires as nanoscale interconnects and the role of atomically smooth interface. Adv. Mater. 2010, 22, 2338-2342.
Kundu, P.; Turner, S.; van Aert, S.; Ravishankar, N.; van Tendeloo, G. Atomic structure of quantum gold nanowires: Quantification of the lattice strain. ACS Nano 2014, 8, 599-606.
Ashcroft, N. W.; Mermin, N. D. Solid State Physics; Holt, Rinehart and Winston: New York, 1976.
Chandni, U.; Kundu, P.; Singh, A. K.; Ravishankar, N.; Ghosh, A. Insulating state and breakdown of fermi liquid description in molecular-scale single-crystalline wires of gold. ACS Nano 2011, 5, 8398-8403.
Chandni, U.; Kundu, P.; Kundu, S.; Ravishankar, N.; Ghosh, A. Tunability of electronic states in ultrathin gold nanowires. Adv. Mater. 2013, 25, 2486-2491.
Lu, Y.; Huang, J. Y.; Wang, C.; Sun, S. H.; Lou, J. Cold welding of ultrathin gold nanowires. Nat. Nano 2010, 5, 218-224.
Xu, S.; Joseph, S.; Zhang, H. T.; Lou, J.; Lu, Y. Controllable high-throughput fabrication of porous gold nanorods driven by Rayleigh instability. RSC Adv. 2016, 6, 66484-66489.
Joshi, C.; Abinandanan, T. A.; Choudhury, A. Phase field modelling of rayleigh instabilities in the solid-state. Acta Mater. 2016, 109, 286-291.
Wang, L. H.; Liu, P.; Guan, P. F.; Yang, M. J.; Sun, J. L.; Cheng, Y. Q.; Hirata, A.; Zhang, Z.; Ma, E.; Chen, M. W. et al. In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nat. Commun. 2013, 4, 2413.