AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Triboelectric nanogenerator based on magnetically induced retractable spring steel tapes for efficient energy harvesting of large amplitude motion

Guanlin LiuJie ChenHengyu GuoMeihui LaiXianjie PuXue WangChenguo Hu( )
Department of Applied PhysicsChongqing UniversityChongqing400044China
Show Author Information

Graphical Abstract

Abstract

The triboelectric nanogenerator has attracted global attention since it was proposed in 2012; the exploration of new applications is ongoing with much enthusiasm in this field. In this paper, we present a novel triboelectric nanogenerator based on magnetically induced retractable spring steel tapes (MR-TENG) to develop energy harvesting from large amplitude periodic motion, which is an ingenious design that employs a new material. The tape-like structural design ensures that the contact/separate direction of the friction layers is perpendicular to the direction of the external force, breaking the amplitude limitation of previous nanogenerators with vertical contact/separate motion. Combined with flexible spring steel tapes, this design enables portability thus widening its application. The working mechanism and factors that may affect the output performance are systematically studied. The results show that the maximum short-circuit current, open-circuit voltage and instantaneous power are 21 μA, 342 V, and 1.8 mW, respectively. Moreover, we also demonstrate the great potential of the MR-TENG to serve as a self-powered displacement sensor and portable emergency power supply. This work greatly widens the applications of triboelectric nanogenerators (TENGs) through new material selection and innovative structural design.

Electronic Supplementary Material

Download File(s)
nr-11-2-633_ESM.pdf (1.2 MB)

References

1

Grätzel, M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 2005, 44, 6841–6851.

2

Lewis, N. S. Toward cost-effective solar energy use. Science 2007, 315, 798–801.

3

Tress, W.; Marinova, N.; Inganäs, O.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Graetzel, M. Predicting the open- circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: The role of radiative and non-radiative recombination. Adv. Energy Mater. 2015, 5, 1400812.

4

Hossain, M. F.; Zhang, Z. H.; Takahashi, T. Novel micro-ring structured ZnO photoelectrode for dye-sensitized solar cell. Nano-Micro Lett. 2010, 2, 53–55.

5

Zhu, T. J.; Fu, C. G.; Xie, H. H.; Liu, Y. T.; Zhao, X. B. High efficiency half-Heusler thermoelectric materials for energy harvesting. Adv. Energy Mater. 2015, 5, 1500588.

6

Huang, H. H.; Cui, Y.; Li, Q.; Dun, C. C.; Zhou, W.; Huang, W. X.; Chen, L.; Hewitt, C. A.; Carroll, D. L. Metallic 1T phase MoS2 nanosheets for high-performance thermoelectric energy harvesting. Nano Energy 2016, 26, 172–179.

7

Lee, J. A.; Aliev, A. E.; Bykova, J. S.; de Andrade, M. J.; Kim, D.; Sim, H. J.; Lepró, X.; Zakhidov, A. A.; Lee, J. B.; Spinks, G. M. et al. Woven-yarn thermoelectric textiles. Adv. Mater. 2016, 28, 5038–5044.

8

Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

9

Hu, Y. F.; Wang, Z. L. Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors. Nano Energy 2015, 14, 3–14.

10

Chen, X. Y.; Pu, X, Jiang, T.; Yu, A. F.; Xu, L.; Wang, Z. L. Tunable optical modulator by coupling a triboelectric nanogenerator and a dielectric elastomer. Adv. Funct. Mater. 2017, 27, 1603788.

11

Chen, X. Y.; Jiang, T.; Yao, Y. Y.; Xu, L.; Zhao, Z. F.; Wang, Z. L. Stimulating acrylic elastomers by a triboelectric nanogenerator—toward self-powered electronic skin and artificial muscle. Adv. Funct. Mater. 2016, 26, 4906–4913.

12

Chen, Y.; Au, J.; Kazlas, P.; Ritenour, A.; Gates, H.; McCreary, M. Electronic paper: Flexible active-matrix electronic ink display. Nature 2003, 423, 136.

13

Kim, D. H.; Ahn, J. H.; Choi, W. M.; Kim, H. S.; Kim, T. H.; Song, J. Z.; Huang, Y. Y.; Liu, Z. J.; Lu, C.; Rogers, J. A. Stretchable and foldable silicon integrated circuits. Science 2008, 320, 507–511.

14

Hammock, M. L.; Chortos, A.; Tee, B. C. K.; Tok, J. B. H.; Bao, Z. N. 25th anniversary article: The evolution of electronic skin (e-skin): A brief history, design considerations, and recent progress. Adv. Mater. 2013, 25, 5997–6038.

15

Burns, S. E.; Reynolds, K.; Reeves, W.; Banach, M.; Brown, T.; Chalmers, K.; Cousins, N.; Etchells, M.; Hayton, C.; Jacobs, K. et al. A scalable manufacturing process for flexible active- matrix e-paper displays. J. Soc. Inf. Disp. 2005, 13, 583–586.

16

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

17

Zhong, J. W.; Zhang, Y.; Zhong, Q. Z.; Hu, Q. Y.; Hu, B.; Wang, Z. L.; Zhou, J. Fiber-based generator for wearable electronics and mobile medication. ACS Nano 2014, 8, 6273–6280.

18

Zhang, H. L.; Yang, Y.; Hou, T. C.; Su, Y. J.; Hu, C. G.; Wang, Z. L. Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors. Nano Energy 2013, 2, 1019–1024.

19

Quan, T.; Wang, X.; Wang, Z. L.; Yang, Y. Hybridized electromagnetic-triboelectric nanogenerator for a self-powered electronic watch. ACS Nano 2015, 9, 12301–12310.

20

Tang, W.; Tian, J. J.; Zheng, Q.; Yan, L.; Wang, J. X.; Li, Z.; Wang, Z. L. Implantable self-powered low-level laser cure system for mouse embryonic osteoblasts' proliferation and differentiation. ACS Nano 2015, 9, 7867–7873.

21

Weiss, P. S. A conversation with Prof. Zhong Lin Wang, energy harvester. ACS Nano 2015, 9, 2221–2226.

22

Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C. Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960–4965.

23

Xia, X. N.; Chen, J.; Guo, H. Y.; Liu, G. L.; Wei, D. P.; Xi, Y.; Wang, X.; Hu, C. G. Embedding variable micro- capacitors in polydimethylsiloxane for enhancing output power of triboelectric nanogenerator. Nano Res. 2017, 10, 320–330.

24

Liu, G. L.; Guo, H. Y.; Chen, L.; Wang, X.; Wei, D. P.; Hu, C. G. Double-induced-mode integrated triboelectric nanogenerator based on spring steel to maximize space utilization. Nano Res. 2016, 9, 3355–3363.

25

Lee, K. Y.; Chun, J.; Lee, J. H.; Kim, K. N.; Kang, N. R.; Kim, J. Y.; Kim, M. H.; Shin, K. S.; Gupta, M. K.; Baik, J. M. et al. Hydrophobic sponge structure-based triboelectric nanogenerator. Adv. Mater. 2014, 26, 5037–5042.

26

He, X. M.; Mu, X. J.; Wen, Q.; Wen, Z. Y.; Yang, J.; Hu, C. G.; Shi, H. F. Flexible and transparent triboelectric nanogenerator based on high performance well-ordered porous PDMS dielectric film. Nano Res. 2016, 9, 3714–3724.

27

Quan, T.; Wu, Y. C.; Yang, Y. Hybrid electromagnetic- triboelectric nanogenerator for harvesting vibration energy. Nano Res. 2015, 8, 3272–3280.

28

Wang, X. D.; Gao, Y. F.; Wei, Y. G.; Wang, Z. L. Output of an ultrasonic wave-driven nanogenerator in a confined tube. Nano Res. 2009, 2, 177–182.

29

Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y. S.; Jing, Q. S.; Pan, C. F.; Wang, Z. L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 2013, 13, 2282–2289.

30

Bai, P.; Zhu, G.; Liu, Y.; Chen, J.; Jing, Q. S.; Yang, W. Q.; Ma, J. S.; Zhang, G.; Wang, Z. L. Cylindrical rotating triboelectric nanogenerator. ACS Nano 2013, 7, 6361–6366.

31

Guo, H. Y.; Leng, Q.; He, X. M.; Wang, M. J.; Chen, J.; Hu, C. G.; Xi, Y. A triboelectric generator based on checker- like interdigital electrodes with a sandwiched pet thin film for harvesting sliding energy in all directions. Adv. Energy Mater. 2015, 5, 1400790.

32

Liang, Q. J.; Yan, X. Q.; Liao, X. Q.; Cao, S. Y.; Zheng, X.; Si, H. N.; Lu, S. N.; Zhang, Y. Multi-unit hydroelectric generator based on contact electrification and its service behavior. Nano Energy 2015, 16, 329–338.

33

Das, P. S.; Park, J. Y. Human skin based flexible triboelectric nanogenerator using conductive elastomer and fabric films. Electron. Lett. 2016, 52, 1885–1887.

34

Zhang, H. L.; Yang, Y.; Su, Y. J.; Chen, J.; Adams, K.; Lee, S.; Hu, C. G.; Wang, Z. L. Triboelectric nanogenerator for harvesting vibration energy in full space and as self- powered acceleration sensor. Adv. Funct. Mater. 2014, 24, 1401–1407.

35

Xie, Y. N.; Wang, S. H.; Niu, S. M.; Lin, L.; Jing, Q. S.; Yang, J.; Wu, Z. Y.; Wang, Z. L. Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 2014, 26, 6599–6607.

36

Tang, W.; Jiang, T.; Fan, F. R.; Yu, A. F.; Zhang, C.; Cao, X.; Wang, Z. L. Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 2015, 25, 3718–3725.

37

Zhu, G.; Zhou, Y. S.; Bai, P.; Meng, X. S.; Jing, Q. S.; Chen, J.; Wang, Z. L. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 2014, 26, 3788–3796.

38

Li, Z. L.; Chen, J.; Guo, H. Y.; Fan, X.; Wen, Z.; Yeh, M. H.; Yu, C. W.; Cao, X.; Wang, Z. L. Triboelectrification-enabled self-powered detection and removal of heavy metal ions in wastewater. Adv. Mater. 2016, 28, 2983–2991.

39

Lin, Z. H.; Zhu, G.; Zhou, Y. S.; Yang, Y.; Bai, P.; Chen, J.; Wang, Z. L. A self-powered triboelectric nanosensor for mercury ion detection. Angew. Chem., Int. Ed. 2013, 52, 5065–5069.

40

Han, C. B.; Jiang, T.; Zhang, C.; Li, X. H.; Zhang, C. Y.; Cao, X.; Wang, Z. L. Removal of particulate matter emissions from a vehicle using a self-powered triboelectric filter. ACS Nano 2015, 9, 12552–12561.

41

Zheng, X.; Su, J. Z.; Wei, X. J.; Jiang, T.; Gao, S. Y.; Wang, Z. L. Self-powered electrochemistry for the oxidation of organic molecules by a cross-linked triboelectric nanogenerator. Adv. Mater. 2016, 28, 5188–5194.

42

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

Nano Research
Pages 633-641
Cite this article:
Liu G, Chen J, Guo H, et al. Triboelectric nanogenerator based on magnetically induced retractable spring steel tapes for efficient energy harvesting of large amplitude motion. Nano Research, 2018, 11(2): 633-641. https://doi.org/10.1007/s12274-017-1668-2

741

Views

26

Crossref

N/A

Web of Science

26

Scopus

2

CSCD

Altmetrics

Received: 07 March 2017
Revised: 04 May 2017
Accepted: 06 May 2017
Published: 18 July 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return